

ORIGINAL COURSE IMPLEMENTATION DATE: September 2005

REVISED COURSE IMPLEMENTATION DATE: September 2019

COURSE TO BE REVIEWED (six years after UEC approval):

Course outline form version: 05/18/2018

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: COMP 152 Number of Credits: 4 Course credit policy (105)

Course Full Title: Introduction to Structured Programming

Course Short Title:

(Transcripts only display 30 characters. Departments may recommend a short title if one is needed. If left blank, one will be assigned.)

Faculty: Faculty of Professional Studies Department (or program if no department): Computer Information Systems

Calendar Description:

This course is an introduction to structured computer programming. Students will study algorithms and top-down design, and will
implement algorithms in a procedural programming language. Lab exercises and programming assignments will emphasize scientific
and numerical applications.

Note: Competency in computer skills is required. See CIS Required Skills section on the CIS department website for details.

Note: Students with credit for COMP 150 cannot take this course for further credit.

Prerequisites (or NONE): C+ or better in one of the following: Principles of Mathematics 12, Pre-calculus 12,
MATH 093, or MATH 095.

Corequisites (if applicable, or NONE): NONE

Pre/corequisites (if applicable, or NONE): NONE

Antirequisite Courses (Cannot be taken for additional credit.)

Former course code/number:

Cross-listed with:

Dual-listed with:

Equivalent course(s):

(If offered in the previous five years, antirequisite course(s) will be
included in the calendar description as a note that students with credit
for the antirequisite course(s) cannot take this course for further credit.)

Special Topics (Double-click on boxes to select.)

This course is offered with different topics:

 No Yes (If yes, topic will be recorded when offered.)

Independent Study

If offered as an Independent Study course, this course may
be repeated for further credit: (If yes, topic will be recorded.)

 No Yes, repeat(s) Yes, no limit

Transfer Credit

Transfer credit already exists: (See bctransferguide.ca.)

 No Yes

Submit outline for (re)articulation:

 No Yes (If yes, fill in transfer credit form.)

Typical Structure of Instructional Hours

Lecture/seminar hours 45

Tutorials/workshops

Supervised laboratory hours 15

Experiential (field experience, practicum, internship, etc.)

Supervised online activities

Other contact hours:

Total hours 60

Labs to be scheduled independent of lecture hours: No Yes

Grading System

 Letter Grades Credit/No Credit

Maximum enrolment (for information only): 35

Expected Frequency of Course Offerings:

Once per year (Every semester, Fall only, annually, etc.)

Department / Program Head or Director: Talia Q Date approved: December 2028

Faculty Council approval Date approved: December 7, 2018

Dean/Associate VP: Dr. Tracy Ryder Glass Date approved: December 7, 2018

Campus-Wide Consultation (CWC) Date of posting: February 22, 2019

Undergraduate Education Committee (UEC) approval Date of meeting: March 1, 2019

OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

http://www.ufv.ca/media/assets/secretariat/policies/
http://www.ufv.ca/cis/prospective-students/requirements/cis-required-skill-levels/
http://www.bctransferguide.ca/

COMP 152 University of the Fraser Valley Official Undergraduate Course Outline Page 2 of 2

Learning Outcomes:

Upon successful completion of this course, students will be able to:

• Design a structured solution to a problem by repeatedly breaking the problem into a sequence of simpler subproblems.

• Implement a structured design as a computer program, with separate functions corresponding to the subproblems of the
design.

• Describe parameter-passing mechanisms for functions, and choose appropriate mechanisms for programming tasks.

• Describe common looping and selection structures, and choose appropriate structures for the steps of an algorithm.

• Write programs which perform sequential input and output using either keyboard and screen or files.

• Create and use one- and two-dimensional arrays for storing and manipulating data.

• Create and use record structures for storing and manipulating data.

Prior Learning Assessment and Recognition (PLAR)

 Yes No, PLAR cannot be awarded for this course because

Typical Instructional Methods (Guest lecturers, presentations, online instruction, field trips, etc.; may vary at department’s discretion.)

The course will be delivered in lecture-lab format, with numerous demonstrations and hands-on activities. The lab portion gives
students and the instructor the ability to view and interact with current projects.

NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials (If more space is required, download Supplemental Texts and Resource Materials form.)

 Author (surname, initials) Title (article, book, journal, etc.) Current ed. Publisher Year

1. Savitch, W. Problem Solving with C++ Pearson 2014

2.

3.

4.

5.

Required Additional Supplies and Materials (Software, hardware, tools, specialized clothing, etc.)

Typical Evaluation Methods and Weighting

Final exam: 40% Assignments: 15% Field experience: % Portfolio: %

Midterm exam: % Project: % Practicum: % Other: %

Quizzes/tests: 25% Lab work: 20% Shop work: % Total: 100%

Details (if necessary):

Typical Course Content and Topics

• Overview of programming

• Problem-solving and C++

• Variables, constants, and assignment statements

• Built-in and programmer-defined functions

• Selection structures (branching)

• Repetition structures (looping)

• Sequential access files

• Arrays

• Structs

