

ORIGINAL COURSE IMPLEMENTATION DATE: September 1993

REVISED COURSE IMPLEMENTATION DATE: January 2020

COURSE TO BE REVIEWED (six years after UEC approval): October 2025

Course outline form version: 05/18/2018

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: COMP 370 Number of Credits: 3 Course credit policy (105)

Course Full Title: Software Engineering

Course Short Title:

(Transcripts only display 30 characters. Departments may recommend a short title if one is needed. If left blank, one will be assigned.)

Faculty: Faculty of Professional Studies Department (or program if no department): Computer Information Systems

Calendar Description:

A detailed and comprehensive study of object-oriented and classical software engineering techniques. This is an addition to the
analysis and design work covered in CIS 270. Topics cover all aspects of the software life-cycle. Emphasis is placed on object-oriented
techniques and the Unified Modeling Language (UML).

Note: Students with credit for CIS 370 cannot take this course for further credit.

Prerequisites (or NONE): COMP 251 and CIS 270.

Note: Students accepted to a Computing Science major or minor may register with
permission of the department. The CIS 270 prerequisite will be waived for these students

Corequisites (if applicable, or NONE): None

Pre/corequisites (if applicable, or NONE): None

Antirequisite Courses (Cannot be taken for additional credit.)

Former course code/number: CIS 370

Cross-listed with:

Dual-listed with:

Equivalent course(s): CIS 370

(If offered in the previous five years, antirequisite course(s) will be
included in the calendar description as a note that students with credit
for the antirequisite course(s) cannot take this course for further credit.)

Special Topics (Double-click on boxes to select.)

This course is offered with different topics:

 No Yes (If yes, topic will be recorded when offered.)

Independent Study

If offered as an Independent Study course, this course may
be repeated for further credit: (If yes, topic will be recorded.)

 No Yes, repeat(s) Yes, no limit

Transfer Credit

Transfer credit already exists: (See bctransferguide.ca.)

 No Yes

Submit outline for (re)articulation:

 No Yes (If yes, fill in transfer credit form.)

Typical Structure of Instructional Hours

Lecture/seminar hours 23

Tutorials/workshops

Supervised laboratory hours 22

Experiential (field experience, practicum, internship, etc.)

Supervised online activities

Other contact hours:

Total hours 45

Labs to be scheduled independent of lecture hours: No Yes

Grading System

 Letter Grades Credit/No Credit

Maximum enrolment (for information only): 35

Expected Frequency of Course Offerings:

Once per year (Every semester, Fall only, annually, etc.)

Department / Program Head or Director: Edward Lo Date approved: December 20, 2018

Faculty Council approval Date approved: March 15, 2019

Dean/Associate VP: Tracy Ryder Glass Date approved: March 15, 2019

Campus-Wide Consultation (CWC) Date of posting: June 21, 2019

Undergraduate Education Committee (UEC) approval Date of meeting: October 25, 2019

OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

http://www.ufv.ca/media/assets/secretariat/policies/
http://www.bctransferguide.ca/

COMP 370 University of the Fraser Valley Official Undergraduate Course Outline Page 2 of 2

Learning Outcomes:

Upon successful completion of this course, students will be able to:

• Illustrate different software life-cycle models, activities occurring in each phase of software life-cycle, various testing
techniques, methods of planning and estimating, and strategies of improving software reusability and portability.

• Draw up the requirements workflow.

• Perform structured system analysis workflow.

• Perform functional, class, and dynamic modeling workflow.

• Perform object-oriented design, data flow analysis and transaction analysis workflow.

• Apply UML in a team setting for the analysis and design of a small application.

• Apply the software process for the development of a small application.

• Perform unity, integration, product, and acceptance testing.

• Explain the importance and challenge of post-delivery maintenance.

Prior Learning Assessment and Recognition (PLAR)

 Yes No, PLAR cannot be awarded for this course because

Typical Instructional Methods (Guest lecturers, presentations, online instruction, field trips, etc.; may vary at department’s discretion.)

Lectures, labs, and assignments.

NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials (If more space is required, download Supplemental Texts and Resource Materials form.)

 Author (surname,
initials)

Title (article, book, journal, etc.) Current ed. Publisher Year

1. Schach, S.R.
Classical and Object-Oriented Software Engineering with
UML and C++

 WCB/McGraw-Hill 2010

2. Sommerville, I. Software Engineering Addison-Wesley 2015

3.

4.

5.

Required Additional Supplies and Materials (Software, hardware, tools, specialized clothing, etc.)

Typical Evaluation Methods and Weighting

Final exam: 35% Assignments: 20% Field experience: % Portfolio: %

Midterm exam: 15% Project: 30% Practicum: % Other: %

Quizzes/tests: % Lab work: % Shop work: % Total: 100%

Details (if necessary):

Typical Course Content and Topics

Scope of software engineering

The software process

• Requirements

• Specification

• Object-oriented analysis

• Design

• Implementation

• Integration

• Maintenance

• Retirement

• Software life-cycle models

• Testing

• Review of objects

• Reusability, portability, interoperability

• Planning and estimating

