ORIGINAL COURSE IMPLEMENTATION DATE: September 2014 REVISED COURSE IMPLEMENTATION DATE: September 2018 COURSE TO BE REVIEWED: (six years after UEC approval) February 2024 Course outline form version: 09/15/14 ## OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM Note: The University reserves the right to amend course outlines as needed without notice. | Course Code and Number: ENPH 310 | | Numb | Number of Credits: 4 Course credit policy (105) | | | | | | |--|---|------------|---|---|---|---------------------------------------|--|--| | Course Full Title: Electronics I Course Short Title (if title exceeds 30 charac | ters): | · | | | | | | | | Faculty: Faculty of Science | | | Department (or program if no department): Physics | | | | | | | Calendar Description: | | • | | | | | | | | Construct electronic circuits containing diode frequency response of a circuit; design and t project. | | | | | | | | | | Note: Students with credit for PHYS 332 and | PHYS 342 | cannot tak | e this | course fo | r further credit. | | | | | Prerequisites (or NONE): | PHYS 232. Note: As of January 2 232 will become a pre/corequisite | | | | 2019, PHYS 221 will become a prerequisite and PHYS te. | | | | | Corequisites (if applicable, or NONE): | | | | | | | | | | Pre/corequisites (if applicable, or NONE): | | | | | | | | | | Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): PHYS 332 and PHYS 342 Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit. | | | Transfer Credit Transfer credit already exists: ☐ Yes ☐ No Transfer credit requested (OReg to submit to BCCAT): ☐ Yes ☐ No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: ☐ Yes ☐ No To find out how this course transfers, see bctransferguide.ca. | | | | | | | Total Hours: 75 | | | | Special Topics | | | | | | Typical structure of instructional hours: | | | | Will the course be offered with different topics? | | | | | | Lecture hours | | | | ☐ Yes ☑ No | | | | | | Seminars/tutorials/workshops | | | | If ves di | If yes, different lettered courses may be taken for c | | | | | Laboratory hours | | | | | Yes, no limit | | | | | Field experience hours | | | | | | | | | | Experiential (practicum, internship, etc.) | | | | Note: The | Note: The specific topic will be recorded when offered. Maximum enrolment (for information only): 18 | | | | | Online learning activities | | | | Maximu | | | | | | Other contact hours: | Tatal | 7.5 | | | | -# | | | | | Total | 75 | | | every other year, etc.): A | offerings (every semester,
nnually | | | | Department / Program Head or Director: Jeff Chizma | | | | Date approved: | November 17, 2017 | | | | | Faculty Council approval | | | | | Date approved: | December 1, 2017 | | | | Campus-Wide Consultation (CWC) | | | | Date of posting: | February 2, 2018 | | | | | Dean/Associate VP: Lucy Lee (Greg Schlitt) | | | | Date approved: | December 1, 2017 | | | | | Undergraduate Education Committee (UEC) approval | | | | Date of meeting: | February 23, 2018 | | | | ## **Learning Outcomes** Upon successful completion of this course, students will be able to: | Analyze existing analog electronic circuits at the block level. Design specific analog electronic circuits at the block level. Construct physical analog circuits using individual electronic components. Manage the devices, tools, and electronic components in a basic electronics laboratory. Simulate electronic circuits using industry standard software tools. Explain how various basic electronic components work at both a fundamental and a practical level. | | | | | | | | | | | | | |---|----------------------------------|-------------|------------------------------------|-----------|-----------------------|---|--|--|--|--|--|--| | Prior Learning Assessment and Recognition (PLAR) | Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) | | | | | | | | | | | | | | Lecture, demonstrations, laboratories. | Grading system: Letter Grades: ☐ Credit/No Credit: ☐ Labs to be scheduled independent of lecture hours: Yes ☐ No ☐ | | | | | | | | | | | | | | NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor. | | | | | | | | | | | | | | Typical Text(s) and Resource Materials (if more space is required, download Supplemental Texts and Resource Materials form) | | | | | | | | | | | | | | Author (surname, initials) Title (| | Current ed. | Publisher | Year | | | | | | | | | | 1. Sedra / Smith Micro | | \boxtimes | Oxford University | 2014 | | | | | | | | | | 2. | | | | | | | | | | | | | | 3. | | | | | | | | | | | | | | 4. | | | | | | | | | | | | | | 5. | | | | | | | | | | | | | | Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) | | | | | | | | | | | | | | | | ırdware, t | ools, specialized clothii | ng, etc.) | | | | | | | | | | Typical Evaluation Methods and | | rdware, t | ools, specialized clothii | ng, etc.) | | | | | | | | | | Typical Evaluation Methods and | Weighting | 15% | ools, specialized clothing | 25% | Practicum: | % | | | | | | | | Typical Evaluation Methods and Final exam: 45% | Weighting Assignments: | | | | Practicum: Shop work: | % | | | | | | | | Typical Evaluation Methods and Final exam: 45% Quizzes/tests: % | Weighting Assignments: | 15% | Midterm exam: | 25% | | | | | | | | | | Typical Evaluation Methods and Final exam: 45% Quizzes/tests: % | Weighting Assignments: Lab work: | 15%
15% | Midterm exam:
Field experience: | 25% | Shop work: | % | | | | | | | - Signals and amplifiers - Diodes and semiconductor physics - Bipolar Junction Transistors - MOS Field Effect Transistors - Operational Amplifiers - Integrated circuit amplifiers - Power amplifier - Frequency response