OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 105		Number of Credits: 4 Course credit policy (105)		
Course Full Title: Math for the Elementary School Teacher Course Short Title (if title exceeds $\mathbf{3 0}$ characters): Math for Elementary Teachers				
Faculty: Faculty of Science		Department (or program if no department): Mathematics and Statistics		
Provides direct experiences with elementary school mathematics, allowing students to explore their reasoning strategies and gain greater understanding and confidence in their mathematical abilities. Topics include problem solving strategies, sets, numeration systems, properties of real numbers, number theory, and geometry.				
Prerequisites (or NONE):	One of the or MATH Applicati (any UFV of the MS Note: As in one of or MATH Foundati numbere	llowing: (C) or (B or b of Math 11 ATH course anuary 201 ciples of M) or (C+ or of Mathem 2 or higher	better in one of Principles of er in Foundations of Mathema (one of Foundations of Mathe mbered 092 or higher) or (a s prerequisites will change to: ematics 11, Pre-calculus 11, ter in Applications of Mathem s 11) or (Pre-calculus 12) or ((a score of 17/25 or better on	atics 11, Pre-calculus 11, or (C+ or better in 12 or Pre-calculus 12) or $17 / 25$ or better on Part A he following: (C or better tions of Mathematics 12,) or (B or better in V MATH course of the MSAT).
Corequisites (if applicable, or NONE):	NONE			
Pre/corequisites (if applicable, or NONE):	NONE			
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \boxtimes Yes No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: Yes \square No	
Total Hours: 60 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) \square Yes, no limit Note: The specific topic will be recorded when offered.	
Lecture hours		60		
Seminars/tutorials/workshops				
Laboratory hours				
Field experience hours				
Experiential (practicum, internship, etc.)				
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Fall \& Winter semesters	
Other contact hours:				
	Total	60		
Department / Program Head or Director: Ian Affleck			Date approved:	September 2017
Faculty Council approval			Date approved:	September 8, 2017
Campus-Wide Consultation (CWC)			Date of posting:	October 13, 2017
Dean/Associate VP: Lucy Lee			Date approved:	September 8, 2017
Undergraduate Education Committee (UEC) approval			Date of meeting:	October 27, 2017

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Perform the necessary computations in order to demonstrate a conceptual understanding of the basic laws of arithmetic and the properties of geometry.
2. Use appropriate problem-solving strategies in order to structure clear and concise solutions to problems related to the elementary school curriculum.
3. Evaluate mathematical materials related to the elementary school curriculum

Prior Learning Assessment and Recognition (PLAR)

区 Yes
\square No, PLAR cannot be awarded for this course because

Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion)
Lectures are balanced with problem sessions and group activities. Evaluation will include tests, quizzes, assignments, and a three-hour comprehensive exam.
Grading system: Letter Grades: $\boxtimes \quad$ Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes $\square \quad$ No \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials						
The text is chosen by a departmental curriculum committee. Author (surname, initials) Title (article, book, journal, etc.)						
				Current ed.	Publisher	Year
1. Musser, Burger, Peterson.	Mathematics for Elementary Teachers, $10^{\text {th }}$ edition			\square	Wiley	2013
2.				\square		
3.				\square		
4.				\square		
5.				\square		
Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) Compass and protractor.						
Typical Evaluation Methods and Weighting						
Final exam: 40\%	Assignments:	15\%	Midterm exam:	\%	Practicum:	\%
Quizzes/tests: 35\%	Lab work:	\%	Field experience:	\%	Shop work:	\%
Other: Project: 10	Other:	\%	Other:	\%	Total:	\%

Details (if necessary):
Students must achieve at least 40% on the final exam to receive credit for this course

Typical Course Content and Topics

Patterns and Problem Solving Strategies
Sets and Venn Diagrams
Whole Number Operations
Numeration Systems
Algorithms in other Bases
Primes, Composites
Fractions, Decimals, Ratio and Proportion and Percent
Operations with Integers, Rational Numbers and Irrational Numbers
Geometric Shapes and Properties
Measurement including Perimeter and Area
Congruence and Similarity
Transformations and Tessellations

