OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 110		Number of Credits: 4 Course credit policy (105)		
Course Full Title: Pre-Calculus Math Course Short Title (if title exceeds $\mathbf{3 0}$ characters):				
Faculty: Faculty of Science		Department (or program if no department): Mathematics and Statistics		
Calendar Description: An opportunity to develop high school mathematics skills in order to progress into first-year calculus. Topics include basic algebraic skills, functions including rational, exponential, logarithmic, trigonometric, and inverse functions, and an introduction to the instantaneous rate of change. Practical applications are emphasized. Note: Students with credit for MATH 140 cannot take this course for further credit.				
Prerequisites (or NONE):	One of the following: (C or better in one of Principles of Mathematics 12 or Pre-calculus 12) or (B or better in Calculus 12) or (both MATH 092 and MATH 093) or (both MATH 094 and MATH 095) or (MATH 096) or (C+ or better in Applications of Mathematics 12) or (at least 55% on the MDPT).			
Corequisites (if applicable, or NONE):	NONE			
Pre/corequisites (if applicable, or NONE):	NONE			
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): MATH 140 Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \boxtimes Yes \square No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: \square Yes \square No To find out how this course transfers, see bctransferguide.ca.	
Total Hours: 60 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) Yes, no limit Note: The specific topic will be recorded when offered.	
Lecture hours		60		
Seminars/tutorials/workshops				
Laboratory hours				
Field experience hours				
Experiential (practicum, internship, etc.)				
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Fall and Winter	
Other contact hours:				
Total		60		
Department / Program Head or Director: lan Affleck			Date approved:	September 2017
Faculty Council approval			Date approved:	September 8, 2017
Campus-Wide Consultation (CWC)			Date of posting:	October 13, 2017
Dean/Associate VP: Lucy Lee			Date approved:	September 8, 2017
Undergraduate Education Committee (UEC) approval			Date of meeting:	October 27, 2017

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Demonstrate basic algebraic skills, especially those most frequently required in the study of calculus,
2. Demonstrate proficiency with function notation,
3. Use technology to explore mathematical concepts,
4. Explain the graphs and properties of the basic functions used in calculus (power, rational, exponential, logarithmic, trigonometric, inverse functions), and
5. Apply the basic functions to practical situations, translating from English to mathematics and back again.

Prior Learning Assessment and Recognition (PLAR)

\boxtimes Yes $\quad \square$ No, PLAR cannot be awarded for this course because

Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) Lectures are interspersed with problem sessions; evaluation includes assignments, midterms, and a three-hour comprehensive final. Graphing calculators will be used throughout.

Grading system: Letter Grades: \boxtimes Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes \square No \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials

The textbook is chosen by a departmental curriculum committee. Recent texts include:

Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.)
A graphing calculator (without a computer algebraic system) is required.

Typical Evaluation Methods and Weighting

$\left.\begin{array}{|lr|l|ll|ll|}\hline \text { Final exam: } & 40 \% & \text { Assignments: } & 10 \% & \text { Midterm exam: } & \% & \text { Practicum: }\end{array}\right]$

Details (if necessary): Students must achieve at least 40% on the final exam in order to receive credit for this course.

Typical Course Content and Topics

1. Review of basic algebra.
2. Algebraic equations and inequalities.
3. Functions and graphs, including mathematical notation and language, and the use of functions to relate a mathematical equation to situations encountered in life.
4. Polynomial and rational functions.
5. Inverse functions: finding them graphically and algebraically, understanding their uses.
6. Exponential and logarithmic functions, including applications such as population growth, radioactive decay, the spread of pollution.
7. Trigonometric functions and their relationship to periodic phenomena such as ocean tides, human physiology.
8. Analytic trigonometry
9. Sequences, series, inductions, as time permits.
10. Introduction to the instantaneous rate of change.
