OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Analyze arguments, test argument validity, and construct counterexamples to invalid arguments.
2. Apply problem solving strategies.
3. Estimate calculations to roughly judge the value of a quantity.
4. Evaluate rates, proportions and percentages.
5. Model data with linear, quadratic, exponential, and logarithmic functions.
6. Differentiate between basic geometric concepts (point, line, plane).
7. Identify geometric measures (length, area, volume, angle).
8. Calculate basic probabilities.
9. Display, summarize, analyze and interpret statistical data.
10. Calculate descriptive statistics.
11. Find correlation and apply linear regression model to a given set of data.
12. Calculate simple and compound interest on investments.
13. Calculate present and future values of investments.
14. Calculate monthly payments, mortgages and loans.
15. Apply the above skills and tools to model real-world situations and phenomena to make predictions and sound decisions.

Prior Learning Assessment and Recognition (PLAR)

Q Yes
No, PLAR cannot be awarded for this course because
Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) Lectures, presentations, online text support; may be team-taught by a mathematician and statistician.

Grading system: Letter Grades: \boxtimes Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes \square No \boxtimes
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials (if more space is required, download Supplemental Texts and Resource Materials form)						
1. K. Denley \& M. Hall	Viewing Life Mathematically: A Pathway to Quantitative Literacy			区	Hawkes	2016
2. J.I. Brown Mathe	Mathematics for the Liberal Arts			\boxtimes	CRC Press	2015
3.				\square		
4.				\square		
5.				\square		
Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) Graphing calculator (eg, TI-84+), spreadsheet software (eg, Excel)						
Typical Evaluation Methods and Weighting						
Final exam 40\% (or 30\%)	Assignments:	20\%	Midterm exam:	\%	Practicum:	\%
Quizzes/tests: 40\%	Lab work:	\%	Field experience:	\%	Shop work:	\%
Presentations (opt'l) 0\% (or 10\%)	:	\%	:	\%	Total:	100\%

Details (if necessary): Optional essay and presentations in lieu of a portion of the final exam weighting. In order to pass the course, a student must achieve 40% or higher on the final exam or on the portion of the grade generated by the final exam and the presentation.

Typical Course Content and Topics

1. Critical thinking and problem solving

$$
\begin{array}{ll}
\text { - } & \text { thinking mathematically } \\
- & \text { problem solving processes and techniques } \\
- & \text { estimating and evaluating }
\end{array}
$$

2. Rates, ratios, proportions and percentages

- rates and unit rates
- proportions, ratios
- absolute and percentage changes
- unit conversions (egs: currency, mileage, weight)

3. Mathematics of growth: models and predictions

- the language of functions

-	linear growth
-	quadratic models
-	exponential growth
-	logarithmic growth

4. Everyday geometry:

- lines, planes, angles
- parallel and perpendicular lines
- perimeters, areas, volumes

5. Probability and statistics:

- collecting and displaying data with graphs and charts
- describing and analyzing data
- calculating means, medians, and standard deviations
- calculate basic probabilities
- the normal distribution
- linear regression and correlations

6. Personal finance:

- understanding personal finance
- understanding simple and compound interest
- savings and retirement funds
- borrowing, mortgages and loans

7. As time permits, an optional topic to be chosen from the following:

- sports statistics
- graph theory (trees, matchings, networks)
- number theory (prime numbers, modular arithmetic, cryptography)
- mathematics in art (planar symmetries, tilings, isometries)
- voting and social choice (fairness, apportionment, weighted voting systems)

Students will have an option to write an essay and give a presentation on an interesting topic of their choice. Some examples of topics related to issues in Mathematics or Statistics include:

- Mathematics in architecture
- Mathematics in art (sculpture, textiles, different geometries)
- Game theory (probability, expectation)
- Famous math problems (math in the news)
- Logic games
- Mathematics in nature (fractal geometry, crystals)
- Mathematics and music (harmonies, ratios, logarithms and musical intervals)
- Opinion polls (margin of error, 19 times out of 20)
- Design of experiments (placebo effect, double-blind tests)
- Indigenous mathematics (patterns in art and weaving, 8way math, drum making)

