OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 124		Number of Credits: 4 Course credit policy (105)		
Course Full Title: Finite Math with Applications in the Information Sciences Course Short Title (if title exceeds 30 characters): Finite Math				
Faculty: Faculty of Science		Department (or program if no department): Mathematics \& Statistics		
Reinforces skills in algebra, graphing, and problem solving, and provides an introduction to finite mathematical structures, algorithms, and techniques important in discrete math, statistics, and computer science. Whenever possible, concepts are motivated by information sciences applications.				
Prerequisites (or NONE):	One of the following: ($C+$ or better in both Statistics 12 and Computer Science 12) or (C or better in one of Foundations of Mathematics 11, Principles of Mathematics 11, Precalculus 11, or MATH 085) or (one of Foundations of Mathematics 12, Principles of Mathematics 12, Pre-calculus 12, MATH 092, MATH 094, or MATH 096) or (a score of $17 / 25$ or better on Part A of the MSAT).			
Corequisites (if applicable, or NONE):				
Pre/corequisites (if applicable, or NONE):				
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \boxtimes Yes \square No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: \square Yes \boxtimes No To find out how this course transfers, see bctransferguide.ca.	
Total Hours: 60 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) \square Yes, no limit Note: The specific topic will be recorded when offered.	
Lecture hours		60		
Seminars/tutorials/workshops				
Laboratory hours				
Field experience hours				
Experiential (practicum, internship, etc.)				
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Annually	
Other contact hours:				
	Total	60		
Department / Program Head or Director: lan Affleck			Date approved:	September 2017
Faculty Council approval			Date approved:	September 8, 2017
Campus-Wide Consultation (CWC)			Date of posting:	October 13, 2017
Dean/Associate VP: Lucy Lee			Date approved:	September 8, 2017
Undergraduate Education Committee (UEC) approval			Date of meeting:	October 27, 2017

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Solve basic algebraic equations in one variable
2. Determine and compare asymptotic behaviour of power, polynomial, exponential, root, and logarithmic functions
3. Solve equations and inequalities involving power, polynomial, exponential, root, and logarithmic functions with the aid of graphing technology
4. Solve linear inequalities in two variables and interpret the solution set graphically
5. Construct systems of linear equations from a variety of applications
6. Apply row reduction algorithms to solve small linear systems by hand
7. Perform basic arithmetic operations with matrices
8. Use technology to compute the inverse of a matrix
9. Formulate linear programming restriction sets in a variety of applications
10. Solve small linear programming problems by graphical methods
11. Apply Venn diagrams and basic principles of counting to solve elementary counting problems
12. Apply basic principles of probability and counting to calculate the probabilities of events in simple applications

Prior Learning Assessment and Recognition (PLAR)
\boxtimes Yes $\quad \square$ No, PLAR cannot be awarded for this course because
Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) Lectures may be interspersed with problem sessions. Graphing calculators will be used. In addition, mathematical software may be used.

Grading system: Letter Grades: \boxtimes Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes \square No \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials (if more space is required, download Supplemental Texts and Resource Materials form)						
Author (surname, initials)	Title (article, book, journal, etc.)			Current ed.	Publisher	Year
1. Lial, Hungerford, Holcomb	Finite Mathematics with Applications, $11^{\text {th }}$ edition			\square	Pearson	2015
2. Lial, Greenwell, Ritchey	Finite Mathematics, $11^{\text {th }}$ edition			\square	Pearson	2016
3. Goldstein, Schneider, Siegel	Finite Mathematics \& Its Applications, $11^{\text {th }}$ edition			\square	Pearson	2014
4. Beecher, Penna, Ellenbogen and Bittinger	Precalculus: Graphs and Models, $4^{\text {th }}$ edtion			\square	Pearson	2009
5.	\square					
Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) A graphing calculator will be required. Note that more than one text is usually required to cover all of the learning outcomes.						
Typical Evaluation Methods and Weighting						
Final exam: 40\%	Assignments:	10\%	Midterm exam:	30\%	Practicum:	\%
Quizzes/tests: 20\%	Lab work:	\%	Field experience:	\%	Shop work:	\%
Other: \%	Other:	\%	Other:	\%	Total:	100\%

Details (if necessary): Students must obtain at least 40% on the final exam to pass the course.

Typical Course Content and Topics

1. Algebra and equations:

The real numbers; polynomials and factoring; rational expressions; exponents and radicals; linear and quadratic equations
2. Functions and graphs:

Linear, quadratic, polynomial, exponential, and logarithmic functions; graphs, end behaviour and applications of the above functions; running time of algorithms
3. Linear algebra:

Systems of linear equations; solutions by row reduction (by hand and using technology); matrix arithmetic and multiplication; matrix inverses; applications in information sciences
4. Linear programming:

Graphing linear inequalities in two variables; solutions by graphical methods; applications
5. Introduction to set theory:

Sets; union, intersection and complement; Venn diagrams
6. Introduction to counting and probability:

The multiplication principle; permutations and combinations; probability and odds; basic rules of probability

