OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 125		Number of Credits: 4 Course credit policy (105)		
Course Full Title: Introduction to Discrete Mathematics Course Short Title (if title exceeds $\mathbf{3 0}$ characters): Introduction to Discrete Math				
Faculty: Faculty of Science		Department (or program if no department): Mathematics and Statistics		
Serves as an introduction to some basic techniques in discrete mathematics, including methods of counting, modular arithmetic, and formal logic. The focus of the course will be on formulating problems into mathematical models and on methods applicable to the analysis of these models.				
Prerequisites (or NONE):	One of the of Found 124) or Mathem together	ollowing: (C ns of Mathe better in bo 12) or (MA a score of	better in Principles of Mathe tics 12, Pre-calculus 12, MA MATH 094 and MATH 095) 110) or (a score of $17 / 25$ or 50 on Parts A and B combined	2) or (C or better in one MATH 096, or MATH better in Applications of Part B of the MSAT
Corequisites (if applicable, or NONE):				
Pre/corequisites (if applicable, or NONE):				
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \boxtimes Yes \square No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: Yes \square No To find out how this course transfers, see bctransferguide.ca.	
Total Hours: 60 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes \square No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) \square Yes, no limit Note: The specific topic will be recorded when offered.	
Lecture hours		60		
Seminars/tutorials/workshops				
Laboratory hours				
Field experience hours				
Experiential (practicum, internship, etc.)				
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Every fall and winter	
Other contact hours:				
	Total	60		
Department / Program Head or Director: Ian Affleck			Date approved:	September 2017
Faculty Council approval			Date approved:	September 8, 2017
Campus-Wide Consultation (CWC)			Date of posting:	October 13, 2017
Dean/Associate VP: Lucy Lee			Date approved:	September 8, 2017
Undergraduate Education Committee (UEC) approval			Date of meeting:	October 27, 2017

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Explain and use basic counting arguments to enumerate combinatorial objects
2. Calculate and estimate simple probabilities
3. Explain and use the techniques of propositional calculus
4. Apply principles of elementary number theory

Prior Learning Assessment and Recognition (PLAR)
\boxtimes Yes $\quad \square$ No, PLAR cannot be awarded for this course because

Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) This course is primarily lecture based. Individual student research is encouraged through the use of term projects.

Grading system: Letter Grades: $\boxtimes \quad$ Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes \square No \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials

The textbook is chosen by a departmental curriculum committee. Recent text used:

	Author (surname, initials) Title (article, book, journal, etc.)	Current ed. Publisher	
1. Epp, S.	Discrete Mathematics with Applications, 4 ${ }^{\text {th }}$ Ed.	\square	Nelson
2.	\square		
3.	\square		
4.	\square	Year	
5.	\square		

Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.)
Scientific calculator
Typical Evaluation Methods and Weighting

Final exam:	40%	Assignments:	10%	Midterm exam:	$\%$	Practicum:	$\%$
Quizzes/tests:	50%	Lab work:	$\%$	Field experience:	$\%$	Shop work:	$\%$
Other:	$\%$	Other:	$\%$	Other:	$\%$	Total:	$\%$

Details (if necessary):

Students must obtain at least 40% on the final exam in order to pass this course.

Typical Course Content and Topics

Set Theory Counting:
a) induction
b) sums and products
c) permutations and combinations
d) binomial theorem
e) inclusion/exclusion arguments
f) introduction to probability
g) pigeon hole principle
h) recurrence relations

Logical Syntax/Semantics:
a) informal versus formal arguments
b) propositional calculus
c) Boolean algebras

Number Theory:
a) modular arithmetic
b) primes and composites
c) linear Diophantine equations

