OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 125		Number of Credits: 4 Course credit policy (105)			
Course Full Title: Introduction to Discrete Mathematics Course Short Title (if title exceeds $\mathbf{3 0}$ characters): Introduction to Discrete Math					
Faculty: Faculty of Science		Department (or program if no department): Mathematics and Statistics			
Calendar Description: Serves as an introduction to some basic techniques in discrete mathematics, including methods of counting, recursion, and formal logic. The focus of the course will be on formulating problems into mathematical models and on methods applicable to the analysis of these models.					
Prerequisites (or NONE):	One of the following: (C+ or better in both Pre-calculus 11 and Geometry 12) or (C+ or better in both Pre-calculus 11 and Statistics 12) or (C+ or better in Principles of Mathematics 12) or (C or better in one of Foundations of Mathematics 12, Pre-calculus 12, MATH 092, MATH 096, or MATH 124) or (C or better in both MATH 094 and MATH 095) or (B or better in Applications of Mathematics 12) or (MATH 110) or (a score of $17 / 25$ or better on Part B of the MSAT together with a score of $34 / 50$ on Parts A and B combined).				
Corequisites (if applicable, or NONE):					
Pre/corequisites (if applicable, or NONE):					
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \square Yes No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: \square Yes \square No To find out how this course transfers, see bctransferguide.ca.		
Total Hours: 60 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) Yes, no limit Note: The specific topic will be recorded when offered.		
Lecture hours		60			
Seminars/tutorials/workshops					
Laboratory hours					
Field experience hours					
Experiential (practicum, internship, etc.)					
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Every semester		
Other contact hours:					
Total		60			
Department / Program Head or Director: lan Affleck				Date approved:	September 24, 2018
Faculty Council approval				Date approved:	November 2, 2018
Campus-Wide Consultation (CWC)				Date of posting:	n/a
Dean/Associate VP: Lucy Lee				Date approved:	November 2, 2018
Undergraduate Education Committee (UEC) approval				Date of meeting:	December 14, 2018

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Use counting arguments to enumerate combinatorial objects and calculate discrete probabilities.
2. Use techniques of formal logic to establish logical equivalence and verify validity of arguments.
3. Construct statements and arguments using logical connectives and quantifiers.
4. Apply (weak) induction to simple problems.
5. Manipulate and solve $1^{\text {st }}$ and $2^{\text {nd }}$ degree recurrence relations.
6. Model problems using recurrence relations.
7. Use set notation and perform set operations.
8. Prove basic set properties.
9. Identify basic properties and calculate basic parameters of simple graphs, including trees and rooted trees.

Prior Learning Assessment and Recognition (PLAR)
\boxtimes Yes $\quad \square$ No, PLAR cannot be awarded for this course because
Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion)
This course is primarily lecture based. Individual student research is encouraged through the use of term projects.
Grading system: Letter Grades: $\boxtimes \quad$ Credit/No Credit: $\square \quad$ Labs to be scheduled independent of lecture hours: Yes \square No \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials

The textbook is chosen by a departmental curriculum committee. Recent text used:

Author (surname, initials) Title (article, book, journal, etc.)				Current ed.	Publisher	Year
1. Epp, S. Diso	Discrete Mathematics with Applications, $4^{\text {th }}$ Ed.			\square	Nelson	2010
Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) Scientific calculator						
Typical Evaluation Methods and Weighting						
Final exam: 40\%	Assignments:	10\%	Midterm exam:	\%	Quizzes/tests:	50\%
Other: \%	Other:	\%	Other:	\%	Total:	100\%

Details (if necessary): Students must obtain at least 40% on the final exam in order to pass this course.

Typical Course Content and Topics

Counting:
a) induction
b) sums and products
c) permutations and combinations
d) binomial theorem
e) inclusion/exclusion arguments
f) introduction to probability

Recurrence Relations
a) solve $1^{\text {st }}$ order recurrence relations using iteration
b) solve $2^{\text {nd }}$ order linear homogeneous recurrence relations with constants coefficients using theorems
c) use to analyze and model problems

Set Theory:
a) basic terminology and symbols
b) proofs using element arguments and set law
c) Cartesian products

Logical Syntax/Semantics:
a) informal versus formal arguments
b) statement logic
c) logical equivalency
d) validity of arguments
e) Boolean algebras
f) predicates
g) quantified statements

Graphs and Trees:
a) definitions and basic properties for simple graphs
b) walks, closed walks, trails, paths, circuits, simple circuits
c) trees and their properties
d) rooted trees and their properties

