OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 140		Number of Credits: 3 Course credit policy (105)		
Course Full Title: Algebra and Functions for Business Course Short Title (if title exceeds $\mathbf{3 0}$ characters): Algebra \& Functions for Business				
Faculty: Faculty of Science		Department (or program if no department): Mathematics and Statistics		
Develops mathematical skills and techniques necessary for the study of calculus with business applications. Students will solve small linear systems of equations, examine linear, quadratic, cubic, rational, exponential, logarithmic, and logistic models and their graphs, and study various measures of change. Practical applications in business, economics, and the social sciences are emphasized. Note: Students with credit for MATH 110 cannot take this course for further credit.				
Prerequisites (or NONE):	One of the following: ($\mathrm{C}+$ or better in one of Foundations of Mathematics 11 or Precalculus 11) or (C or better in one of Principles of Mathematics 11 or MATH 085) or (one of Foundations of Mathematics 12, Pre-calculus 12, Principles of Mathematics 12, MATH 092, or MATH 096) or (a score of $17 / 25$ or better on Part A of the MSAT). Note: As of January 2019, prerequisites will change to: One of the following: ($\mathrm{C}+$ or better in Pre-calculus 11) or (C or better in one of Principles of Mathematics 11, or Precalculus 12, or MATH 085) or (one of Principles of Mathematics 12, MATH 092, or MATH 096) or (a score of $17 / 25$ or better on Part A of the MSAT).			
Corequisites (if applicable, or NONE):	NONE			
Pre/corequisites (if applicable, or NONE):	NONE			
Equivalent Courses (cannot be taken for additional credit) Former course code/number: Cross-listed with: Equivalent course(s): MATH 110 Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.			Transfer Credit Transfer credit already exists: \square Yes No Transfer credit requested (OReg to submit to BCCAT): Yes No (if yes, fill in transfer credit form) Resubmit revised outline for articulation: \boxtimes Yes \square No To find out how this course transfers, see bctransferguide.ca.	
Total Hours: 50 Typical structure of instructional hours:			Special Topics Will the course be offered with different topics? Yes No If yes, different lettered courses may be taken for credit: No Yes, repeat(s) Yes, no limit Note: The specific topic will be recorded when offered.	
Lecture hours		50		
Seminars/tutorials/workshops				
Laboratory hours				
Field experience hours				
Experiential (practicum, internship, etc.)				
Online learning activities			Maximum enrolment (for information only): 36 Expected frequency of course offerings (every semester, annually, every other year, etc.): Every semester	
Other contact hours:				
	Total	50		
Department / Program Head or Director: Ian Affleck			Date approved:	September 2017
Faculty Council approval			Date approved:	September 8, 2017
Campus-Wide Consultation (CWC)			Date of posting:	October 13, 2017
Dean/Associate VP: Lucy Lee			Date approved:	September 8, 2017
Undergraduate Education Committee (UEC) approval			Date of meeting:	October 27, 2017

Learning Outcomes

Upon successful completion of this course, students will be able to:

1. Perform arithmetic combinations of polynomial and rational expressions
2. Factor quadratic and some cubic expressions
3. Solve linear and quadratic equations, linear inequalities, and inequalities involving absolute values
4. Solve small systems of linear equations algebraically and graphically
5. Demonstrate appropriate use and interpretation of function notation
6. Sketch the graph of a given function and analyse a given graph of a function
7. Using graph, data, equation, or application, identify the following models: linear, quadratic, cubic, exponential, logarithmic, logistic
8. Use technology to construct regression equations for the above models from data, including piecewise-defined models
9. Compute and interpret inverses of linear, exponential, and logarithmic functions
10. Solve exponential and logarithmic equations
11. Translate between graph, point-slope form, and slope-intercept form of a line
12. Compute and interpret difference quotient and average rate of change of a function and secant slope on a graph
13. Interpret all results in the field of interest from which the model being analyzed arose

Prior Learning Assessment and Recognition (PLAR)

\boxtimes Yes $\quad \square$ No, PLAR cannot be awarded for this course because
Course Challenge
Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion) Students will learn to use graphing calculators as a tool for plotting and analyzing functions.

Grading system: Letter Grades:
Credit/No Credit: \square
Labs to be scheduled independent of lecture hours: Yes \square
NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Typical Text(s) and Resource Materials							
Author (surname, initials)	Title (article, book, journal, etc.)				Current ed.	Publisher	Year
1. Bittinger et al	Precalculus: Graphs and Models, $4^{\text {th }}$ ed.				\square	Pearson	2009
2.					\square		
3.					\square		
4.					\square		
5.					\square		
Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.) A Texas Instruments graphing calculator (TI-83, TI-83Plus, $\mathrm{TI}-84, \mathrm{TI}-85$, or $\mathrm{TI}-86$) is required							
Typical Evaluation Methods and Weighting							
Final exam:	40\%	Assignments:	10\%	Midterm exam:	\%	Practicum:	\%
Quizzes/tests:	50\%	Lab work:	\%	Field experience:	\%	Shop work:	\%
Other:	\%	Other:	\%	Other:	\%	Total:	100\%

Details (if necessary):

* Students must obtain at least 40% on the final exam to pass the course, regardless of term grades.

Typical Course Content and Topics

1. Algebra:
(a) Real numbers and their properties, intervals, absolute value
(b) Integer exponents, order of operations
(c) Polynomial arithmetic and basic factoring
(d) Rational expressions: domain, arithmetic, simplification
(e) Radical notation and rational exponents
(f) Solving linear and quadratic equations, linear inequalities
2. Linear systems:
(a) Solving 2-variable linear systems algebraically and graphically
(b) Solving 3-variable linear systems algebraically and with the use of technology
3. Functions:
(a) Linear, quadratic, cubic, exponential, logarithmic, logistic, simple rational functions
(b) Function notation
(c) Graph of a function
(d) Using functions to relate mathematical equations to real situations
(e) Piecewise-defined functions
(f) Combinations, compositions, and transformations of functions
(g) Inverse functions: finding them graphically and algebraically, understanding their uses
4. Modeling and regression:
(a) How to choose and build linear, exponential, logarithmic, logistic, polynomial models using technology
(b) Constructing piecewise-continuous models using technology
5. Applications in business and the social sciences
(a) Population growth, compound interest, depreciation, doubling time, and halving time
(b) Supply and demand equilibrium, break-even point
(c) Cost, revenue, profit as functions of production level
6. Introducation to calculus
(a) Difference quotients, secant slopes, average rate of change
(b) Introduction to tangent lines and the instantaneous rate of change
