

COURSE IMPLEMENTATION DATE: COURSE REVISED IMPLEMENTATION DATE: May 2014 COURSE TO BE REVIEWED: (six years after UEC approval)

January 1995 May 2020 (month, year)

OFFICIAL UNDERGRADUATE COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use. Shaded headings are subject to change at the discretion of the department – see course syllabus available from instructor						
PHYS 311 Faculty of Science / Physics 3 COURSE NAME/NUMBER FACULTY/DEPARTMENT UFV CREDITS Statistical Physics COURSE DESCRIPTIVE TITLE					EDITS	
CALENDAR DESCRIPTION:						
Basic statistics and statistical distributions (Binomial, Gaussian, and Poisson); statistical description of particle interactions and equilibrium, phase space, and the number of microstates; micro canonical, canonical, and grand canonical distributions; partition functions, entropy, and the Boltzmann factor; quantum statistics, Fermi-Dirac, and Bose-Einstein systems.						
PREREQUISITES: PHYS 231. Note: As of May 2015, prerequisites will change to the following: (PHYS 231) and (one						
COREQUISITES: PRE or COREQUISITES:	of PHYS 221 or PHYS	381).				
SYNONYMOUS COURSE(S)):		SERVICE COUR	RSE TO: (department/pro	gram)	
(b) Cross-listed with:		_				
(c) Cannot take:		for further credit.				
TOTAL HOURS PER TERM: 75 TRAINING DAY-BASED INSTRUCTION: STRUCTURE OF HOURS: 75 Hrs Lectures: 75 Hrs Seminar: Hrs Hours per day: Laboratory: Hrs Field experience: Hrs Student directed learning: Hrs Other (specify): Hrs					ears	
WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only) Yes No WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Yes No TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Yes No						
Course designer(o): Bob Woodside (revised by leff Chime)						
Department Head: Derek Harnett			Date approved.	August 26, 2013		
Campus-Wide Consultation (CWC)			Date of meeting:	September 27, 2013	—	
Curriculum Committee chair: David Fenske			Date approved:	October 18, 2013		
Dean/Associate VP: Lucy Lee			Date approved:	October 18, 2013		
Undergraduate Education Committee (UEC) approval Date of meeting: January 31, 2014						

LEARNING OUTCOMES:

Upon successful completion of this course, students will be able to:

- Apply basic statistical techniques to simple systems (like dice, coins etc) to make predictions on various outcomes
- Derive the Gaussian and Poisson distributions as limiting cases of the Binomial distribution
- Demonstrate the applicability of statistical methods to systems of large numbers of particles
- Explain the difference between the micro-canonical, canonical, and grand-canonical distributions, and be able to perform calculations with these distributions
- Calculate temperatures and pressures based on maximizing the number of microstates
- Perform phase space calculations within the micro-canonical distribution for various systems, including ideal gases and simple extensions
- Utilize the partition function to calculate internal energy, entropy, and other important thermodynamic quantities
- Show how the number of microstates is related to the partition function
- State the importance of the chemical potential for quantum systems
- Provide explanations for the difference between quantum and classical statistical distributions
- Extend the Boltzmann factor calculations to include Fermi-Dirac and Bose-Einstein systems
- Validate the connection between the theoretical basis of Statistical Mechanics and the empirical laws of Thermodynamics

METHODS: (Guest lecturers, presentations, online instruction, field trips, etc.)

This course will be taught using lectures, demonstrations, seminars and student projects. Problems will be assigned and marked on a regular basis.

METHODS OF OBTAINING PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Examination(s)

Portfolio assessment Interview(s)

Other (specify): Please see the Physics PLAR policy on the department's webpage

□ PLAR cannot be awarded for this course for the following reason(s):

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]

Fundamentals of Statistical and Thermal Physics, F. Reif, Waveland Press (2008)

SUPPLIES / MATERIALS:

STUDENT EVALUATION:

[An example of student evaluation for this course might be:]

Assignments:	30%
Term test:	20%
Project or presentation:	10%
Final exam:	40%

COURSE CONTENT:

[Course content varies by instructor. An example of course content might be:]

1. Overview of Basic Statistics

• Binomial, Gaussian, and Poisson distributions, mean, median, variance and standard deviations, random walk in 1 dimension

2. Application of Statistics to Physical Systems

 Micro canonical and canonical distributions, counting microstates, phase space, density of states, derivation of the Boltzmann distribution, equilibrium values

3. Connection with Thermodynamics

 Pressure, temperature, and entropy as related to microstates, partition function, chemical potential, ideal gas and Van der Waals equations of state, equipartition theorem

4. Quantum Statistics

 Quantum counting, fermions, and Fermi-Dirac statistics, bosons and Bose-Einstein statistics, grand partition function, relationship between the chemical potential and the number of particles, photon gas, and blackbody radiation, third law of thermodynamics