

COURSE IMPLEMENTATION DATE: COURSE REVISED IMPLEMENTATION DATE: May 2015 COURSE TO BE REVIEWED: (six years after UEC approval)

January 1995 May 2020 (month, year)

OFFICIAL UNDERGRADUATE COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.			
Shaded headings are subject to change at the discretion of the department – see course syllabus available from instructor			
PHYS 311 Faculty of Science / Physics Course NAME/NUMBER COURSE NAME/NUMBER FACULTY/DEPARTMENT UFV CF Statistical Physics			
COURSE DESCRIPTIVE TITLE			
CALENDAR DESCRIPTION: Basic statistics and statistical distributions (Binomial, Gaussian, and Poisson); statistical description of particle interaction	aand		
equilibrium, phase space, and the number of microstates; micro canonical, canonical, and grand canonical distributions; functions, entropy, and the Boltzmann factor; quantum statistics, Fermi-Dirac, and Bose-Einstein systems.			
PREREQUISITES: (PHYS 231) and (one of PHYS 221 or PHYS 381/MATH 381/ENGR 257). COREQUISITES: PRE or COREQUISITES:			
SYNONYMOUS COURSE(S): SERVICE COURSE TO: (department/product) (a) Replaces: SERVICE COURSE TO: (department/product)	gram)		
(b) Cross-listed with:			
(c) Cannot take: for further credit.			
TOTAL HOURS PER TERM: 75 TRAINING DAY-BASED INSTRUCTION: STRUCTURE OF HOURS: Length of course: Length of course: Lectures: 75 Hrs Hours per day: Seminar: Hrs Hrs Hrs			
Laboratory: Hrs OTHER:			
Field experience: Hrs Maximum enrolment: 24	<u> </u>		
Student directed learning: Hrs Expected frequency of course offerings: Once every two y Other (specify): Hrs (every semester, annually, every other year, etc.)	ears		
WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only) Image: Yes No WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Image: Yes No TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Image: Yes Image: Yes Image: Yes			
Course designer(s): Rob Woodside (revised by Jeff Chizma)			
Department Head:Derek HarnettDate approved:August 26, 2013Campus-Wide Consultation (CWC)Date of meeting:September 27, 2013	—		
Curriculum Committee chair: David Fenske Date of meeting. September 27, 2013 Outriculum Committee chair: David Fenske Date approved: October 18, 2013			
	11		
Dean/Associate VP: Lucy Lee Date approved: October 18, 2013	—		

LEARNING OUTCOMES:

Upon successful completion of this course, students will be able to:

- Apply basic statistical techniques to simple systems (like dice, coins etc) to make predictions on various outcomes
- Derive the Gaussian and Poisson distributions as limiting cases of the Binomial distribution
- Demonstrate the applicability of statistical methods to systems of large numbers of particles
- Explain the difference between the micro-canonical, canonical, and grand-canonical distributions, and be able to perform calculations with these distributions
- Calculate temperatures and pressures based on maximizing the number of microstates
- Perform phase space calculations within the micro-canonical distribution for various systems, including ideal gases and simple extensions
- Utilize the partition function to calculate internal energy, entropy, and other important thermodynamic quantities
- Show how the number of microstates is related to the partition function
- State the importance of the chemical potential for quantum systems
- Provide explanations for the difference between quantum and classical statistical distributions
- Extend the Boltzmann factor calculations to include Fermi-Dirac and Bose-Einstein systems
- Validate the connection between the theoretical basis of Statistical Mechanics and the empirical laws of Thermodynamics

METHODS: (Guest lecturers, presentations, online instruction, field trips, etc.)

This course will be taught using lectures, demonstrations, seminars and student projects. Problems will be assigned and marked on a regular basis.

METHODS OF OBTAINING PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Examination(s)

Portfolio assessment Interview(s)

Other (specify): Please see the Physics PLAR policy on the department's webpage

□ PLAR cannot be awarded for this course for the following reason(s):

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]

Fundamentals of Statistical and Thermal Physics, F. Reif, Waveland Press (2008)

SUPPLIES / MATERIALS:

STUDENT EVALUATION:

[An example of student evaluation for this course might be:]

Assignments:	30%
Term test:	20%
Project or presentation:	10%
Final exam:	40%

COURSE CONTENT:

[Course content varies by instructor. An example of course content might be:]

1. Overview of Basic Statistics

• Binomial, Gaussian, and Poisson distributions, mean, median, variance and standard deviations, random walk in 1 dimension

2. Application of Statistics to Physical Systems

• Micro canonical and canonical distributions, counting microstates, phase space, density of states, derivation of the Boltzmann distribution, equilibrium values

3. Connection with Thermodynamics

• Pressure, temperature, and entropy as related to microstates, partition function, chemical potential, ideal gas and Van der Waals equations of state, equipartition theorem

4. Quantum Statistics

 Quantum counting, fermions, and Fermi-Dirac statistics, bosons and Bose-Einstein statistics, grand partition function, relationship between the chemical potential and the number of particles, photon gas, and blackbody radiation, third law of thermodynamics