

ORIGINAL COURSE IMPLEMENTATION DATE: September 2007
REVISED COURSE IMPLEMENTATION DATE: January 2018
COURSE TO BE REVIEWED: (six years after UEC approval) August 2023

Course outline form version: 09/15/14

OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: PHYS 457			Number of Credits: 3 Course credit policy (105)					
Course Full Title: Particle Physics	Course Full Title: Particle Physics							
Course Short Title (if title exceeds 30 charac	ters):							
Faculty: Faculty of Science Department (or pro			t (or prog	rogram if no department): PHYSICS				
Calendar Description:								
The Standard Model of particle physics desc processes using relativistic kinematics, consc light hadrons in the quark model.								
Prerequisites (or NONE):	PHYS 351.	Note: PH	IYS 35	52 is recon	nmended as a pre/coreq	uisite.		
Corequisites (if applicable, or NONE):								
Pre/corequisites (if applicable, or NONE):								
Equivalent Courses (cannot be taken for add	litional credit)		Transfe	fer Credit			
Former course code/number:				Transfer	ransfer credit already exists: Yes No			
Cross-listed with:				Transfer	credit requested (OPea	to submit to BCCAT):		
Equivalent course(s):					er credit requested (OReg to submit to BCCAT): No (if yes, fill in transfer credit form)			
way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.				Resubm	Resubmit revised outline for articulation: Yes No To find out how this course transfers, see			

Learning Outcomes

Upon successful completion of this course, students will be able to:

- Identify the essential features of the Standard Model of particle physics including quarks, leptons, antiparticles, generations, quantum numbers, the three interactions, gauge vector bosons, and hadrons
- Define (operationally) lifetimes, branching ratios, and cross sections (both inclusive and exclusive)
- Sketch Feynman diagrams corresponding to decays and scattering processes
- Apply conservation of 4-momentum to particle processes
- · Analyze particle processes using conservation of angular momentum, lepton number, parity, and charge conjugation number
- Identify CKM-suppressed weak processes
- Compare related strong interaction processes using conservation of isospin
- · Calculate ground state masses and magnetic dipole moments of light hadrons within the quark model

Prior Lear	Prior Learning Assessment and Recognition (PLAR)							
	☐ No, PLAR cannot be awarded for this course because							
Typical Ins	Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department's discretion)							
	ectures, assignments, exams							
• Po	 Possibly audio-visual materials, seminars, student projects/presentations 							
Grading s	vstem: Letter Grades: 🗵 Credit/No Credit: 🗍 Labs to be scheduled independent of lecture hours: Yes 🗍 No 🕅							

NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Тур	Typical Text(s) and Resource Materials (if more space is required, download Supplemental Texts and Resource Materials form)							
	Author (surname, initials)	Title (article, book, journal, etc.)	Current ed.	Publisher	Year			
1.	Griffiths, D.	Introduction to Elementary Particles		Wiley-VCH	2008			
2.	Perkins, D.	Introduction to High Energy Physics		Cambridge	2015			
3.	Martin, Brian and Shaw, Graham	Particle Physics	\boxtimes	Wiley	2017			
4.								
5.					_			

Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.)

Typical Evaluation Methods and Weighting

Final exam:	40%	Assignments:	15%	Midterm exam:	%	Practicum:	%
Quizzes/tests:	30%	Lab work:	%	Field experience:	%	Shop work:	%
Project/Presentation:	15%	Other:	%	Other:	%	Total:	100%

Details (if necessary):

Typical Course Content and Topics

- Introduction to the Standard Model of particle physics
- Decay rates and cross sections
- Relativistic kinematics: scattering and decays
- Symmetries and conservation laws: angular momentum, isospin, flavor, parity, and charge conjugation
- Hadron masses and magnetic dipole moments from the quark model