OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department and the material will vary - see course syllabus available from instructor

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>Science, Health & Human Services / Physics / Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENGR 152</td>
<td></td>
</tr>
<tr>
<td>COURSE NAME/NUMBER</td>
<td>Linear Algebra for Engineering</td>
</tr>
<tr>
<td>FORMER COURSE NUMBER</td>
<td></td>
</tr>
<tr>
<td>UCFV CREDITS</td>
<td>4</td>
</tr>
</tbody>
</table>

CALENDAR DESCRIPTION:

This course covers the solutions to linear systems of equations, vector spaces, applications to 2D and 3D geometry, linear dependence and independence, matrix algebra, determinants, orthogonal transformations and bases, application to Fourier series, eigenvalues, diagonalization, symmetric matrices, the algebra of complex numbers, the differential equations of vibrational models and linear systems of equations. This course is designed for students seeking a career in engineering, students intending on a BSc or BA degree are recommended to take MATH 221 instead of ENGR/MATH 152.

NOTE: UCFV math degrees require MATH 221, not MATH 152. Credit cannot be obtained for both MATH 152 and ENGR 152.

PREREQUISITES:

MATH 112

SYNONYMOUS COURSE(S)

(a) Replaces: ____________________

(b) Cannot take: Math 152 for further credit.

TOTAL HOURS PER TERM:

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS:</th>
<th>TRAINING DAY-BASED INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 60 Hrs</td>
<td></td>
</tr>
<tr>
<td>Seminar:</td>
<td></td>
</tr>
<tr>
<td>Laboratory:</td>
<td></td>
</tr>
<tr>
<td>Field Experience:</td>
<td></td>
</tr>
<tr>
<td>Student Directed Learning:</td>
<td></td>
</tr>
<tr>
<td>Other (Specify):</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM ENROLLMENT:

36 every Winter semester

WILL TRANSFER CREDIT BE REQUESTED?

<table>
<thead>
<tr>
<th>(lower-level courses only)</th>
<th>(upper-level requested by department)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

Expected Frequency of Course Offerings:

- every Winter semester

Authorization Signatures:

Course Designer(s):

Math Department / Barry Garner - update

Chairperson:

Gillian Mimmack (Curriculum Committee)

Department Head:

Norm Taylor

Dean:

Jackie Snodgrass

UPAC Approval in Principle Date:

UPAC Final Approval Date: December 14, 2005
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:

The successful student will be able to:
1. solve systems of linear equations;
2. perform appropriate calculations to test for the existence of a vector space, for linear dependence and independence, construct a basis for a vector space and calculate its dimension;
3. find eigenvalues and eigenvectors, especially of symmetric matrices of small dimension, and reduce to diagonal form;
4. perform the usual calculations with complex numbers including conjugacy manipulations and applications of DeMoivre's theorem;
5. apply the previous techniques to the solution of differential equations;
6. be able to derive the vibrational solutions to second-order linear differential equations with constant coefficients;
7. use the appropriate technology to perform the calculations associated with these mathematical methods.

Note: this course concentrates on Euclidean N-spaces and sub-spaces thereof.

METHODS:
Lectures, with tutorial sessions.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):
Credit can be awarded for this course through PLAR (Please check:)
☐ Yes ☐ No

METHODS OF OBTAINING PLAR:
Course challenge. Please check online at http://www.ucfv.ca/math/challenge.htm for the departmental challenge policy.

TEXTBOOKS, REFERENCES, MATERIALS:
[Textbook selection varies by instructor. An example of texts for this course might be:]
The text is chosen by a departmental curriculum committee.
Recent texts:
- Zill, D. and Kent, PWS. A First Course in Differential Equations with Applications. (Chapter 5, Vibrational Models)

SUPPLIES / MATERIALS:

STUDENT EVALUATION:
[An example of student evaluation for this course might be:]
Assignments & Quizzes 25%
Mid-term Examinations (2) 30%
Final Examination 45%
Students must achieve at least 40% on the final exam in order to receive credit for this course.

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]
Use of graphing calculator and/or CAS expected. Most examples and demonstrations will be in terms of 2- and 3-dimensions.
1. Linear systems of equations; row-reduced echelon form, rank.
2. Vector space, dot product, vector product (in 3D); applications to 2D and 3D geometry.
4. Matrix form of geometrically defined linear transformations.
5. Properties of determinants.
6. Linear dependence and independence, span, dimension.
7. Orthogonal transformations, orthonormal basis.
8. Algebra of complex numbers, De Moivre's theorem, exp(z), ln(z), principal value, exp(w ln(z)).
10. Second order linear differential equations with constant coefficients, vibrational models.
11. Linear systems of differential equations, diagonalizable case, 2x2 nondiagonalizable case.
12. Fourier series.