

ORIGINAL COURSE IMPLEMENTATION DATE:

REVISED COURSE IMPLEMENTATION DATE:

COURSE TO BE REVIEWED (six years after UEC approval):

December 2028

Course outline form version: 09/08/2021

OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

Course Code and Number: MATH 340		Number of Credits: 3 Course credit policy (105)				
Course Full Title: Introduction to Analysis Course Short Title: Introduction to Analysis						
Faculty: Faculty of Science		Department (or program if no department): Mathematics & Statistics				
Calendar Description:						
Introduces some of the fundamental ideas of and convergence of sequences and functions uniform continuity, convergence and uniform	s, continuity, d	lifferentiability,	Cauchy s	equences, the Extreme an	nd Mean Value theorems,	
Prerequisites (or NONE):	MATH 265.					
Corequisites (if applicable, or NONE):	NONE					
Pre/corequisites (if applicable, or NONE):	NONE					
Antirequisite Courses (Cannot be taken for	additional cre	edit.)	Course Details			
Former course code/number: MATH 214, MA	TH 320		Special Topics course: No			
Cross-listed with:			(If yes, the course will be offered under different letter designations representing different topics.)			
Equivalent course(s):				,	ет торкоз.)	
(If offered in the previous five years, antirequi			Directed Study course: No (See policy 207 for more information.)			
included in the calendar description as a note that students with for the antirequisite course(s) cannot take this course for further			ait · · · · · · · · · · · · · · · · · ·			
			Delivery Mode: May be offered in multiple delivery modes			
Typical Structure of Instructional Hours			Expected frequency: Every other year			
Lecture/seminar		50	Maximu	ım enrolment (for informati	on only): 36	
			Prior Le	earning Assessment and	Recognition (PLAR)	
				s available for this course.		
	Total hours	50	Transfe	er Credit (See bctransfer	quide ca)	
				r credit already exists: Yes		
Scheduled Laboratory Hours		Submit outline for (re)articulation: No				
Labs to be scheduled independent of lecture hours: No Yes				s, fill in <u>transfer credit form</u> .		
Department approval				Date of meeting:	October 2022	
Faculty Council approval				Date of meeting:	November 4, 2022	
Undergraduate Education Committee (UEC) approval				Date of meeting:	December 16, 2022	

Learning Outcomes (These should contribute to students' ability to meet program outcomes and thus Institutional Learning Outcomes.) Upon successful completion of this course, students will be able to:

- 1. Prove basic results in real analysis using accepted mathematical reasoning and formal proof structure.
- 2. Use the definition of convergence or apply basic theorems related to this definition to prove formally that a given sequence does or does not converge.
- 3. Use the definition of the limit of a function or apply basic theorems related to this definition to prove formally that a given function does or does not have a limit at a particular point.
- 4. Use the definition of continuity or apply basic theorems related to this definition to prove formally that a given function is or is not continuous at a particular point.
- 5. Apply core results of calculus such as the Intermediate Value Theorem, the Extreme Value theorem, the Mean Value theorem, and Fundamental Theorem of Calculus.
- 6. Define the Riemann integral and prove the fundamental properties of this integral.
- 7. Prove convergence theorems for series such as the Ratio test and apply them to test convergence of series.
- 8. Apply tests such as the Weierstrass M-test to prove uniform convergence of series and integrals.
- 9. Construct precise error estimates on Taylor polynomial approximations to smooth functions.

Recommended Evaluation Methods and Weighting (Evaluation should align to learning outcomes.)

Final exam: 35%	Assignments: 25%	Quizzes/tests: 40%
%	[click to select] %	[click to select] %

Details:

Students must achieve at least 40% on the final exam in order to receive credit for this course

NOTE: The following sections may vary by instructor. Please see course syllabus available from the instructor.

Texts and Resource Materials (Include online resources and Indigenous knowledge sources. <u>Open Educational Resources</u> (OER) should be included whenever possible. If more space is required, use the <u>Supplemental Texts and Resource Materials form.</u>)

Туре	Author or description	Title and publication/access details	Year
1. Textbook	Bartle, R.G. and D. Sherbert	Introduction to real analysis, Wiley	2011
2. Textbook	Abbot, Stephen	Understanding Analysis	2001
3. Textbook	Berberian, S.K.	A first course in real analysis, Springer-Verlag	1994
4. Textbook	Rudin, W.	Principles of mathematical analysis	1976
5.			

Required Additional Supplies and Materials (Software, hardware, tools, specialized clothing, etc.)

Course Content and Topics

- I) Limits, Continuity, Differentiability:
 - 1) Limit of a sequence, Cauchy sequences, Bolzano-Weierstrass property
 - 2) Limit of a function
 - 3) Continuity
 - 4) Differentiability
- II) Applications of continuity and differentiability:
 - 1) Extreme Value theorem
 - 2) Mean Value theorem
 - 3) Fundamental theorem of calculus
 - 4) Uniform continuity
- III) Infinite Series:
 - 1) Series of constants convergence, proofs of convergence tests
 - 2) Series of functions convergence, uniform convergence, tests for uniform convergence Weierstrass M-test, Abel and Dirichlet tests continuity and differentiability of functions defined using series
 - 3) Taylor series uniform approximation by polynomials, analytic functions
- IV) Integrals
 - 1) The Riemann integral
 - 2) Improper integrals absolute and conditional convergence
 - 3) Integrals that depend on a parameter uniform convergence