UNIVERSITY COLLEGE OF THE FRASER VALLEY

COURSE INFORMATION

DEPARTMENT: Mathematics

DATE: July 1994

Mathematics 438			
NAME & NUMBER OF COURSE			

Advanced Linear Algebra DESCRIPTIVE TITLE 3 UCFV CREDIT

CATALOGUE DESCRIPTION: Techniques and applications of linear algebra. Vector spaces; linear functionals; the singular value decomposition; the generalized inverse; canonical forms; the spectral decomposition.

COURSE PREREQUISITES: Math 221 and at least two upper-level Math courses.

COURSE COREQUISITES: None

HOURS PER TERM FOR EACH STUDENT	Lecture Laboratory Seminar Field Experience	52 hrs hrs hrs hrs	Student Directed Learning Other - specify: 	hrs hrs 52 HRS
UCFV CREDIT TRANSFER	UCFV CREDIT NON-TRANSFER		NON-CREDIT	
TRANSFER STATUS	(Equivalent, Unassig	gned, Other Details	5)	

SFU credits	Math 438		
UVIC units			
Other			

Math Curriculum Committee
COURSE DESIGNER

J.D. TUNSTALL Ph.D. DEAN OF ACADEMIC STUDIES

<u>Math 438</u> NAME & NUMBER OF COURSE

COURSES FOR WHICH THIS IS A PREREQUISITE: None	RELATED COURSES Math 439

TEXTBOOKS, REFERENCES, MATERIALS (List reading resources elsewhere)

TEXTS: Material selected from:

Linear Algebra - Hoffman & Kunze, Prentice Hall Matrix Computations - Golub & Van Loan, North Oxford

<u>OBJECTIVES</u>: Students will be introduced to central ideas and methods of linear algebra as they are applied in modern mathematics. A symbolic manipulation package (e.g., Maple) will be employed throughout.

Upon completion of the course, students should:

- 1. have a basic but broad knowledge of the fundamental ideas and techniques of modern linear algebra,
- 2. be able to recognize the many guises of projection in situations of approximation, and carry out the necessary computations,
- 3. be able to understand and apply the spectral theorem,
- 4. be able to employ canonical form decompositions, and
- 5. be able to employ efficient techniques of analyzing and solving linear systems.

STUDENT EVALUATION PROCEDURE:

Students will be given 2 to 3 midterm exams during the semester, as well as a final exam. They will also be expected to turn in assignments approximately biweekly. The weighting will be as follows:

Midterm exams	40%
Final exam	40%
Assignments	20%

COURSE CONTENT

COURSE CONTENT

Topics covered will include:

- **1.** Review of Matrix Algebra (matrix arithmetic over the complex numbers.)
- 2. Review of Vector spaces (basis, dimension, coordinates, subspaces.)
- 3. Linear transformations and linear functionals.
 - a. Kernel, range, isomorphisms
 - **b.** Matrix representation
 - c. Dual spaces and dual bases
- 4. Brief review of determinants.
- 5. Inner Product Spaces
 - a. General inner products and norms
 - b. Generalized Gram-Schmidt process
 - c. Orthogonal complements and projection matrices
 - d. Least squares approximation (multiple regression, orthogonal polynomials, finite Fourier series)
 - e. If time permits: positive, unitary and normal operators
- 6. Canonical forms
 - a. Eigenvalues and diagonalizability
 - **b.** The spectral theorem (applications to optimization)
 - c. Direct sum decompositions
 - d. Jordan canonical form (applications of systems of differential equations)
 - e. If time permits: positive, unitary and normal operators
- 7. Computational linear algebra
 - a. Orthogonal transformations (Householder, Givens)
 - b. QR factorization
 - c. Singular value decomposition
 - d. Generalized inverses