OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>Faculty of Science, Health & Human Services / Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME/NUMBER</td>
<td>Preparatory College Physics I</td>
</tr>
<tr>
<td>FORMER COURSE NUMBER</td>
<td>PHYSICS 083</td>
</tr>
<tr>
<td>UCFV CREDITS</td>
<td>4</td>
</tr>
</tbody>
</table>

CALENDAR DESCRIPTION:

This is a college preparatory course equivalent to the Physics 11 course taught in B.C.'s high schools. Successful completion of this course provides the prerequisites to enroll in Phys 101 at UCFV. No prior knowledge of physics is needed or supposed, but it would be advisable to have passed Math 11 (or principles of Math 11) or Math 085 before enrolling in Phys 083.

This course covers the main concepts in mechanics and optics. In mechanics the topics studied are kinematics, vectors, Newton's laws, translational motion with applied forces, centripetal force, energy, work, and momentum. In optics the topics covered are: properties of light, reflection, image formation from plane mirrors, and spherical mirrors, refraction, image formation from convex and concave lenses, diffraction, and models of light.

A large number of experiments will be assigned to provide correlation between the classroom theory and practical applications.

PREREQUISITES:

Any BC Math 11 or Math 084 or Math 085

COREQUISITES:

SYNONYMOUS COURSE(S)

(a) Replaces: n/a

(b) Cannot take: Phys 100 for further credit.

SERVICE COURSE TO:

TOTAL HOURS PER TERM: 90

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS</th>
<th>LENGTH OF COURSE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 45 Hrs</td>
<td>HOURS PER DAY:</td>
</tr>
<tr>
<td>Seminar: Hrs</td>
<td></td>
</tr>
<tr>
<td>Laboratory: 45 Hrs</td>
<td></td>
</tr>
<tr>
<td>Field Experience: Hrs</td>
<td></td>
</tr>
<tr>
<td>Student Directed Learning: Hrs</td>
<td></td>
</tr>
<tr>
<td>Other (Specify): Hrs</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM ENROLLMENT:

24 Once per year

EXPECTED FREQUENCY OF COURSE OFFERINGS:

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only) Yes No

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Yes No

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Yes No

AUTHORIZATION SIGNATURES:

Course Designer(s): George McGuire

Revised by: Norm Taylor

Chairperson: Gillian Mimmack (Curriculum Committee)

Department Head: Norm Taylor

Dean: Jackie Snodgrass

UPAC Approval in Principle Date: December 14, 2005
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:

After successfully finishing this course the students should be able to:

1. Discuss and understand the basic ideas of 1-dimensional kinematics and conservation of momentum and energy, and also physical optics.
2. Apply the principle of physics to explain their physical environment.
3. Gather and analyze data in a lab report.
4. Solve various problems in each of the topic areas listed in the Calendar Description section.
5. Become acquainted with the scientific methods of physics.
6. More realistically assess their chance for a successful career in a science related field, or some branch of the technologies.

METHODS:

1. The course will be presented using a variety of techniques: classroom lectures; laboratory experiments; activities; films; and demonstrations.
2. Close coordination will be maintained between the theoretical and laboratory work.
3. Weekly assignments will be used to evaluate the rate of learning and the depth of the student's comprehension.
4. At least half of the classroom time will be spent on laboratory related activities.
5. The experiments will be used to interact with the students on a more personal and intimate level. This time can be used to give individual help.
6. The periods are 3.0 hours long, with two periods per week, and one break of twenty minutes is given after the instructional time. In this way, students will begin their labs at different intervals and this makes individual help much easier to obtain.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Credit can be awarded for this course through PLAR (Please check:) ☑ Yes ☐ No

METHODS OF OBTAINING PLAR:

Departmental Review and/or Course Challenge

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]
Fundamentals of Physics, D.C. Heath, 1993

SUPPLIES / MATERIALS:

Fully-equipped physics lab

STUDENT EVALUATION:

[An example of student evaluation for this course might be:]
Assignments 20%
Experiments and Activities 10%
Quizzes 10%
Midterm Exam 20%
Final Exam 40%

COURSE CONTENT:

[Course content varies by instructor. An example of course content might be:]
Major concepts: Mechanics and Optics

A. Part 1: Kinematics and Dynamics

1. Introduction
 a. Measurement
 b. Unit systems
 c. Mathematics with powers of ten
 d. Prefixes

2. Collecting Data, Analysis of Data, and Graphing
 a. Common Graph shapes and their analysis
 b. Presenting data tables
 c. The making of some easy kinematic graphs
 d. Slopes

3. Kinematics
 a. Analysis of position (x) vs. time (t) graphs
 b. Analysis of speed (v) vs time (t) graphs
 c. Develop the kinematic equations
 d. Using the three standard kinematic equations

4. Vectors (Graphical Method Only)
 a. Drawing and Labelling
 b. Addition
 c. Subtraction
 d. Relative velocities
 e. Subtraction
 f. Circular motion (graphical)

5. Dynamics and Kinematics
 a. Newton's Laws
 b. Translational Motion with applied forces
 c. Centripetal Force

6. Conservation Laws (1 Dimension only)
 a. Energy and Work
 b. Momentum

B. Part 2: Optics

7. Light
 a. Properties
 b. Historical Significance

8. Reflection and Image Formation
9. Refraction and Image Formation
 a. Snell's Law
 b. Convex Lenses
 c. Concave Lenses
 d. Colour

10. Diffraction and Interference (optional)
 a. Adding Waves
 b. Two slit diffraction
 c. Single slit diffraction
 d. Parallel Plate Interference

11. Models of Light (optional)
 a. Particle Model
 b. Wave Model