Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department – see course syllabus available from instructor.

PHYS 083

(As of Summer 2016: Upgrading and University Preparation)

4

COURSE NAME/NUMBER

Science/Physics

FACULTY/DEPARTMENT

Preparatory University Physics I

UFV CREDITS

COURSE DESCRIPTIVE TITLE

Preparatory University Physics I

CALENDAR DESCRIPTION:

This is a university preparatory course equivalent to the Physics 11 course taught in BC high schools. Successful completion of this course provides the prerequisites to enrol in PHYS 101 at UFV. No prior knowledge of physics is needed. This course covers the main concepts in mechanics and optics. In mechanics, the topics studied are kinematics, vectors, Newton’s laws, translational motion with applied forces, centripetal force, energy, work, and momentum. In optics, the topics covered are properties of light, reflection, image formation from plane mirrors and spherical mirrors, refraction, image formation from convex and concave lenses, diffraction, and models of light.

Note: Students with credit for PHYS 083 cannot take PHYS 100 for further credit.

PREREQUISITES:

One of the following: MATH 084, MATH 085, Principles of Mathematics 11 or 12, Applications of Mathematics 11 or 12, Foundations of Mathematics 11 or 12, Pre-calculus 11 or 12, or Apprenticeship and Workplace Math 11 or 12.

Note: Students with other Mathematics 11 or 12 courses, or who are currently enrolled in a Mathematics 11 or 12 courses, or who are currently enrolled in a Mathematics 11 or 12 courses, may contact the instructor to request permission to register.

SYNONYMOUS COURSE(S):

(a) Replaces: N/A

(b) Cross-listed with:

(c) Cannot take: PHYS 100

SERVICE COURSE TO: (department/program)

TOTAL HOURS PER TERM:

90

TRAINING DAY-BASED INSTRUCTION:

Length of course:

Hours per day:

STRUCTURE OF HOURS:

Lectures: 45 Hrs

Seminar: Hrs

Laboratory: 45 Hrs

Field experience: Hrs

Student directed learning: Hrs

Other (specify): Hrs

OTHER:

Maximum enrolment: 24

Expected frequency of course offerings: Once per year

(every semester, annually, every other year, etc.)

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)

☐ Yes ☐ No

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)

☐ Yes ☐ No

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

☐ Yes ☐ No

COURSE IMPLEMENTATION DATE: April 1999

COURSE REVISED IMPLEMENTATION DATE: January 2012

COURSE TO BE REVIEWED: February 2015

(six years after UEC approval)

COURSE DESIGNER(S): George McGuire

DEPARTMENT HEAD: Norm Taylor

Supporting area consultation (Pre-UEC)

CURRICULUM COMMITTEE CHAIR: Norm Taylor

DEAN/ASSOCIATE VP: Ora Steyn

Course design (lower level):

Date approved: April 2011

Date of meeting: April 8, 2011

Date of meeting: October 28, 2011
LEARNING OUTCOMES:
Upon successful completion of this course, students will be able to:
1. Discuss and understand the basic ideas of 1-dimensional kinematics and conservation of momentum and energy, and also physical optics.
2. Apply the principle of physics to explain their physical environment
3. Gather and analyze data in a lab report
4. Solve various problems in each of the topic areas listed in the Calendar Description section;
5. Become acquainted with the scientific methods of physics
6. More realistically assess their chance for a successful career in a science related field, or some branch of the technologies.

METHODS: (Guest lecturers, presentations, online instruction, field trips, etc.)
1. The course will be presented using a variety of techniques: classroom lectures; laboratory experiments; activities; films; and demonstrations.
2. Close coordination will be maintained between the theoretical and laboratory work.
3. Weekly assignments will be used to evaluate the rate of learning and the depth of the student's comprehension.
4. At least half of the classroom time will be spent on laboratory related activities.
5. The experiments will be used to interact with the students on a more personal and intimate level. This time can be used to give individual help.
6. The periods are 3.0 hours long, with two periods per week, and one break of twenty minutes is given after the instructional time. In this way, students will begin their labs at different intervals and this makes individual help much easier to obtain.

METHODS OF OBTAINING PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):
☑ Examination(s) ☐ Portfolio assessment ☐ Interview(s)
☐ Other (specify): Evidence of having appropriate laboratory skills

☐ PLAR cannot be awarded for this course for the following reason(s):

TEXTBOOKS, REFERENCES, MATERIALS: [Textbook selection varies by instructor. Examples for this course might be:]
Fundamentals of Physics, D.C. Heath, 1993
Introductory Physics, Building Understanding, J. Touger, 2006

SUPPLIES / MATERIALS:
Fully-equipped physics lab

STUDENT EVALUATION: [An example of student evaluation for this course might be:]
Assignments 20%
Experiments and activities 10%
Quizzes 10%
Midterm exam 20%
Final exam 40%

COURSE CONTENT: [Course content varies by instructor. An example of course content might be:]
Major concepts: Mechanics and Optics

A. Part 1: Kinematics and Dynamics
 1. Introduction
 a. Measurement
 b. Unit systems
 c. Mathematics with powers of ten
 d. Prefixes
Course content continued:

2. Collecting Data, Analysis of Data, and Graphing
 a. Common Graph shapes and their analysis
 b. Presenting data tables
 c. The making of some easy kinematic graphs
 d. Slopes
3. Kinematics
 a. Analysis of position (x) vs. time (t) graphs
 b. Analysis of speed (v) vs time (t) graphs
 c. Develop the kinematic equations
 d. Using the three standard kinematic equations
4. Vectors (Graphical Method Only)
 a. Drawing and Labelling
 b. Addition
 c. Subtraction
 d. Relative velocities
 e. Circular motion (graphical)
5. Dynamics and Kinematics
 a. Newton's Laws
 b. Translational Motion with applied forces
 c. Centripetal Force
6. Conservation Laws (1 Dimension only)
 a. Energy and Work
 b. Momentum

B. Part 2: Optics
7. Light
 a. Properties
 b. Historical Significance
8. Reflection and Image Formation
 a. Laws of Reflection
 b. Plane Mirrors
 c. Parabolic Mirrors
9. Refraction and Image Formation
 a. Snell's Law
 b. Convex Lenses
 c. Concave Lenses
 d. Colour
10. Diffraction and Interference (optional)
 a. Adding Waves
 b. Two slit diffraction
 c. Single slit diffraction
 d. Parallel Plate Interference
11. Models of Light (optional)
 a. Particle Model
 b. Wave Model