OFFICIAL UNDERGRADUATE COURSE OUTLINE FORM

Note: The University reserves the right to amend course outlines as needed without notice.

<table>
<thead>
<tr>
<th>Course Code and Number: PHYS 093</th>
<th>Number of Credits: 4</th>
<th>Course credit policy (105)</th>
</tr>
</thead>
</table>

Course Full Title: Preparatory University Physics II
Course Short Title (if title exceeds 30 characters):

Faculty: Faculty of Access and Continuing Education
Department (or program if no department):
Upgrading and University Preparation

Calendar Description:
This university preparatory course, which is equivalent to B.C’s high school Physics 12 course, covers mechanics, electrostatics, electromagnetism, and waves and optics.

Prerequisites (or NONE):
One of Applications of Mathematics 11, Principles of Mathematics 11, Pre-Calculus 11, Foundations of Mathematics 11, MATH 084, or MATH 085 and one of Physics 11, PHYS 083, or PHYS 100.

Corequisites (if applicable, or NONE): None

Pre/corequisites (if applicable, or NONE): None

Equivalent Courses (cannot be taken for additional credit):
Former course code/number: N/A
Cross-listed with: N/A
Equivalent course(s): N/A

Note: Equivalent course(s) should be included in the calendar description by way of a note that students with credit for the equivalent course(s) cannot take this course for further credit.

Transfer Credit:
Transfer credit already exists: ☑ Yes ☒ No

Transfer credit requested (OReg to submit to BCCAT):
☑ Yes ☒ No (if yes, fill in transfer credit form)

Resubmit revised outline for articulation: ☑ Yes ☒ No
To find out how this course transfers, see bctransferguide.ca.

Total Hours: 90

Typical structure of instructional hours:

<table>
<thead>
<tr>
<th>Lecture hours</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminars/tutorials/workshops (in-class)</td>
<td>9</td>
</tr>
<tr>
<td>Laboratory hours (in class)</td>
<td>21</td>
</tr>
<tr>
<td>Field experience hours</td>
<td></td>
</tr>
<tr>
<td>Experiential (practicum, internship, etc.)</td>
<td></td>
</tr>
<tr>
<td>Online learning activities</td>
<td></td>
</tr>
<tr>
<td>Other contact hours:</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>90</td>
</tr>
</tbody>
</table>

Special Topics:
Will the course be offered with different topics?
☑ Yes ☒ No

If yes, different lettered courses may be taken for credit:
☑ No ☐ Yes, repeat(s) ☐ Yes, no limit

Note: The specific topic will be recorded when offered.

Maximum enrolment (for information only): 24

Expected frequency of course offerings (every semester, annually, every other year, etc.): Annually

Department / Program Head or Director: Greg St. Hilaire
Date approved: February 2017

Faculty Council approval
Date approved: March 10, 2017

Campus-Wide Consultation (CWC):
Date of posting: n/a

Dean/Associate VP: Sue Brigden
Date approved: March 10, 2017

Undergraduate Education Committee (UEC) approval
Date of meeting: April 21, 2017
Learning Outcomes

Upon successful completion of this course, students will be able to:

A. Kinematics in Two Dimensions
 • Use the language and concepts of kinematics to describe motion in two dimensions
 • Resolve, add and subtract vectors
 • Analyze and solve kinematical problems in two dimensions

B. Dynamics in Two Dimensions
 • Use the language and concepts of dynamics to describe forces, energy and momentum
 • Analyze and solve problems involving dynamics in two dimensions using free body diagrams
 o Two-dimensional equilibrium – translational and rotational
 o Momentum conservation in two dimensions: elastic and inelastic collisions
 o The Work-Energy theorem and energy conservation
 o Uniform circular motion

C. Electrostatics
 • Use the language and concepts of physics to describe electrostatic phenomena
 • Analyze and solve electrostatic force and electric field problems in two dimensions
 • Analyze and solve electric potential and electric potential energy problems

D. Electromagnetism
 • Use the language and concepts of physics to describe electromagnetic phenomena
 • Analyze and solve problems involving magnetic forces and magnetic fields in two dimensions
 • Analyze and solve problems involving electromagnetic induction – Faraday's Law and Lenz's law
 • Describe devices that operate using electromagnetic induction

E. Waves and Optics
 • Use the language and concepts of physics to describe wave phenomena
 • Define and distinguish between amplitude, wavelength, frequency, wave speed and period
 • Analyze and solve problems involving wave phenomena – refraction, reflection, total internal reflection
 • Describe various wave phenomena and the conditions which produce them
 • Construct ray diagrams for optical systems involving mirrors and lenses

Laboratories:

There will be one laboratory from each topic and a minimum of seven laboratories. Successful students will be able to:

• Collect data through observation:
 o Record a measurement to the appropriate level of precision
 o Recognize that all measured values have an uncertainty

• Construct graphs:
 o Choose appropriate scales
 o Determine line of best fit
 o Label correctly

• Draw conclusions from observations and data:
 o Identify and discuss sources of error
 o Calculate and interpret the slope of a line
 o Relate conclusion to objectives

• Calculate experimental error:
 o Determine % error and % difference where appropriate

• Complete formal lab reports

Prior Learning Assessment and Recognition (PLAR)

☒ Yes ☐ No, PLAR cannot be awarded for this course because

Typical Instructional Methods (guest lecturers, presentations, online instruction, field trips, etc.; may vary at department’s discretion)

• The course will be presented using a variety of techniques: classroom lectures; laboratory experiments; activities; films; and demonstrations.
• Close coordination will be maintained between the theoretical and laboratory work.
• Weekly assignments will be used to evaluate the rate of learning and the depth of the student's comprehension.
• The labs will integrated into the class schedule.
• Regular class sessions will also consist of lab related demonstrations and activities.
• The experiments will be used to interact with the students on a more personal level. This time can be used to give individual help.

Grading system: Letter Grades: ☒ Credit/No Credit: ☐ Labs to be scheduled independent of lecture hours: Yes ☒ No ☐
Typical Text(s) and Resource Materials (if more space is required, download Supplemental Texts and Resource Materials form)

<table>
<thead>
<tr>
<th>Author (surname, initials)</th>
<th>Title (article, book, journal, etc.)</th>
<th>Current ed.</th>
<th>Publisher</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Wilson, Buffa, Lou</td>
<td>College Physics</td>
<td></td>
<td>Pearson</td>
<td>2009</td>
</tr>
<tr>
<td>2. Urone, Hinrichs</td>
<td>College Physics</td>
<td></td>
<td>Openstax</td>
<td>2016</td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Required Additional Supplies and Materials (software, hardware, tools, specialized clothing, etc.)

- Scientific calculator

Typical Evaluation Methods and Weighting

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Final exam:</td>
<td>30%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Assignments:</td>
<td>10%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Midterm exam:</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practicum:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quizzes/tests:</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab work:</td>
<td>20%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field experience:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shop work:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Typical Course Content and Topics

A. Kinematics in Two Dimensions
B. Dynamics in Two Dimensions
C. Electrostatics
D. Electromagnetism
E. Waves and Optics

Details (if necessary):