OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.
Shaded headings are subject to change at the discretion of the department and the material will vary - see course syllabus available from instructor.

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>PHYSICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME/NUMBER:</td>
<td>Mechanics</td>
</tr>
<tr>
<td>FORMER COURSE NUMBER:</td>
<td></td>
</tr>
<tr>
<td>UCFV CREDITS:</td>
<td>5</td>
</tr>
</tbody>
</table>

CALANDER DESCRIPTION:

This course is intended for students who are planning to study engineering science, or life sciences. Topics covered include: vectors, kinematics, dynamics, work and energy, collisions, rotational kinematics, rotational dynamics, simple harmonic motion, and gravitation. The object is to understand the fundamental laws of mechanics, to learn how to apply the theory to solve related problems, and to develop a feeling for the order of magnitude of physical quantities in real experiments.

NOTE: Students cannot take PHYS 100 or PHYS 101 for further credit.

NOTE: Students who have completed BC Calculus 12, IB Math 12, or AP Calculus 12 A or B, do not need MATH 111 as a corequisite.

PREREQUISITES: Physics 11 or PHYS 100; Physics 12 recommended.
COREQUISITES: MATH 111 (Calculus)

SYNONYMOUS COURSE(S)

(a) Replaces: (Course #)
(b) Cannot take: PHYS 100 OR PHYS 101 for further credit.

TOTAL HOURS PER TERM: 105

TRAINING DAY-BASED INSTRUCTION

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS:</th>
<th>LENGTH OF COURSE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 75 Hrs</td>
<td></td>
</tr>
<tr>
<td>Seminar:</td>
<td></td>
</tr>
<tr>
<td>Laboratory: 30 Hrs</td>
<td></td>
</tr>
<tr>
<td>Field Experience:</td>
<td></td>
</tr>
<tr>
<td>Student Directed Learning:</td>
<td></td>
</tr>
<tr>
<td>Other (Specify):</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM ENROLLMENT: 36

EXPECTED FREQUENCY OF COURSE OFFERINGS:

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)

<table>
<thead>
<tr>
<th>Will</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

<table>
<thead>
<tr>
<th>Will</th>
<th>Annually</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>

AUTHORIZATION SIGNATURES:

Course Designer(s): G. McGuire; revised P. Mulhern
Chairperson: T. Cooper; G. Schlitt (Curriculum Committee)

Department Head: T. Cooper; revised P. Mulhern
Dean: K.W. Welsh; revised J. Snodgrass

PAC Approval in Principle Date: PAC Final Approval Date: May 26, 2006
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:

This course is designed for students to use a calculus-based approach to solve physics problems as they apply to science, engineering, and the life sciences.

By the end of the courses students should be able to successfully:

1. Understand the fundamental laws of mechanics and how to apply the theory to solve related problems.
2. Apply physics principles to everyday situations and phenomena in life sciences and engineering.
3. Perform fundamental laboratory experiments, and interpret the data obtained.
4. Develop a feeling for the order of magnitude of physical quantities in real experiments.

METHODS:

This course will be presented using lectures and laboratory experiments. Films or other audio-visual aids will be used where appropriate. Problems will be assigned on a regular basis which are to be handed in and marked. Problems that require the use of calculus will be emphasized. Close coordination will be maintained between laboratory and classroom work. Computer-assisted learning programs will be used to increase the understanding of the concepts being studied.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Credit can be awarded for this course through PLAR (Please check):
✓ Yes □ No

METHODS OF OBTAINING PLAR:

If a student can show evidence of skill equivalent to the lab part of the course, we are willing to consider that plus successful completion of a final exam as equivalent to the course.

TEXTBOOKS, REFERENCES, MATERIALS:


REFERENCES:


SUPPLIES / MATERIALS:

STUDENT EVALUATION:

[An example of student evaluation for this course might be:] Assignments 20%
Mid-term 25%
Laboratory Work 15%
Final Exam 40%

COURSE CONTENT:

[Course content varies by instructor. An example of course content might be:] Introduction to Course: relationship of lecture, tutorials, and laboratories; units and dimensional analysis

Vectors: vector and scalar quantities, addition, resultant of several vectors, unit vector, dot and cross product

Kinematics of a Particle: speed and velocity, relative velocity, average velocity, acceleration, rectilinear motion with constant acceleration, projectiles.

Dynamics of a Particle: Newton’s laws of motion and applications, friction and motion on an incline

Momentum: definition, linear momentum, conservation of momentum, impulse

Work, Energy, and Power: work, kinetic energy, gravitational potential energy, elastic potential energy, equivalence of mass and energy, power

Conservation of Energy: collisions, types of collisions, conservation of total energy, mechanical energy

Rotational Kinematics: angular quantities, angular speed and velocity, angular acceleration, tangential quantities, radial acceleration, centripetal force

Rotational Dynamics: kinematics of pure rotation, centre of mass, torque and rotational inertia, angular momentum, conservation of angular momentum

Gravitation: law of gravitation, gravitational force and weight, satellite motion, Kepler’s laws

Periodic Motion: Hooke’s law, simple harmonic motion, period, displacement, velocity and acceleration for SHM, pendulum and spring motion