OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use. Shaded headings are subject to change at the discretion of the department and the material will vary - see course syllabus available from instructor.

FACULTY/DEPARTMENT: Faculty of Science, Health & Human Services/Physics

COURSE NAME/NUMBER FORMER COURSE NUMBER UCFV CREDITS
Thermodynamics

CALCULATED DESCRIPTION:

This course is designed for students who wish to pursue a career in engineering or physical science. This is an introductory course designed to study the fundamentals of heat, energy, and thermodynamics. Topics include temperature, heat, and the first and second law of thermodynamics, phase change, and the kinetic theory of gases.

NOTE: Beginning September 2007 PHYS 112 will be the new prerequisite for this course.

PREREQUISITES: PHYS 111 and MATH 111 (Beginning September 2007 PHYS 112 will be the new prerequisite for this course)

SYNONYMOUS COURSE(S)
(a) Replaces: n/a
(b) Cannot take: n/a

SERVICE COURSE TO:
(Course #) (Department/Program)

TOTAL HOURS PER TERM: 75

TRAINING DAY-BASED INSTRUCTION

STRUCTURE OF HOURS:
Lectures: 75 Hrs
Seminar: Hrs
Laboratory: Hrs
Field Experience: Hrs
Student Directed Learning: Hrs
Other (Specify): Hrs

MAXIMUM ENROLLMENT: 36

EXPECTED FREQUENCY OF COURSE OFFERINGS: Once every two years

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only) Yes No
WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Yes No
TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Yes No

AUTHORIZATION SIGNATURES:

Course Designer(s): George McGuire; revised Rob Woodside
Chairperson: Gillian Mimmack (Curriculum Committee)
Department Head: Norm Taylor
Dean: Jackie Snodgrass

UPAC Approval in Principle Date: May 26, 2006
UPAC Final Approval Date: May 26, 2006
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:

This course will attempt to broaden, and to deepen the students' present knowledge of thermodynamics. The emphasis will be on applications and problem solving, as this course is designed for students who plan to continue their studies in the applied sciences. After finishing this course, the students should be able to:

1. Demonstrate their understanding of thermodynamics by solving problems in heating and refrigeration;
2. Appreciate the uses of thermodynamics for other sciences;
3. Understand the importance and beauty of science to all of mankind.
4. Solve various problems in each of the topic areas listed in the Calendar Description section.

METHODS:

This course will be presented using lectures, tutorials and demonstrations. Problems will be assigned and marked weekly. Problem solving will emphasize the use of calculus methods and computers (numerical techniques).

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Credit can be awarded for this course through PLAR (Please check:)

☐ Yes
☐ No

METHODS OF OBTAINING PLAR:

Please see the Physics PLAR policy on the department’s webpage

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]

Carter, A.H., Classical and Statistical Thermodynamics, Prentice Hall (2001)

SUPPLIES / MATERIALS:

STUDENT EVALUATION:

[An example of student evaluation for this course might be:]

Assignments 20%
Mid-term 30%
Final Exam 50%

COURSE CONTENT:

[Course content varies by instructor. An example of course content might be:]

1. Temperature: measuring, temp. and internal energy, temperature scales, thermal expansion.