OFFICIAL COURSE OUTLINE INFORMATION

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>PHYS 252</th>
</tr>
</thead>
<tbody>
<tr>
<td>COURSE NAME/NUMBER</td>
<td>COURSE DESCRIPTIVE TITLE</td>
</tr>
<tr>
<td>PHYS 252</td>
<td>Introduction to Twentieth Century Physics: Special Relativity and Quantum Physics</td>
</tr>
</tbody>
</table>

CALENDAR DESCRIPTION:

This is an introductory course in Einstein’s theory of Special Relativity and Quantum Physics. The course will use qualitative discussions of the two theories along with the development of the more formal mathematics needed to acquire a deeper understanding of the theories. The topics in the Theory of Special Relativity include: problems which occurred in the "old physics", Lorentz transformations, and geometrical interpretations of the Lorentz transformations, dynamics, conservation laws, and the so-called paradoxes of relativity. The topics in Quantum physics include: the difficulties arising from the "old physics", short discussion of the first quantum theories (old quantum mechanics), Schrodinger’s wave equation, simple time independent solutions for Schrodinger’s equation, and the applications of quantum physics to atoms and nuclei.

PREREQUISITES:

Physics 112

SYNONYMOUS COURSE(S):

(a) Replaces: n/a

(b) Cannot take: n/a (Course #)

SERVICE COURSE TO:

<table>
<thead>
<tr>
<th>(Course #)</th>
<th>(Department/Program)</th>
</tr>
</thead>
</table>

TOTAL HOURS PER TERM:

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS:</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures:</td>
<td>75 Hrs</td>
</tr>
<tr>
<td>Seminar:</td>
<td>Hrs</td>
</tr>
<tr>
<td>Laboratory:</td>
<td>Hrs</td>
</tr>
<tr>
<td>Field Experience:</td>
<td>Hrs</td>
</tr>
<tr>
<td>Student Directed Learning:</td>
<td>Hrs</td>
</tr>
<tr>
<td>Other (Specify):</td>
<td>Hrs</td>
</tr>
</tbody>
</table>

TRAINING DAY-BASED INSTRUCTION

<table>
<thead>
<tr>
<th>LENGTH OF COURSE:</th>
<th>HOURS PER DAY:</th>
</tr>
</thead>
</table>

MAXIMUM ENROLLMENT:

36

EXPECTED FREQUENCY OF COURSE OFFERINGS:

Once every two years

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)

- Yes
- No

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)

- Yes
- No

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

- Yes
- No

AUTHORIZATION SIGNATURES:

<table>
<thead>
<tr>
<th>Course Designer(s):</th>
<th>Chairperson:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rob Woodside</td>
<td>Gillian Mimmack (Curriculum Committee)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department Head:</th>
<th>Dean:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Norm Taylor</td>
<td>Jackie Snodgrass</td>
</tr>
</tbody>
</table>

UPAC Approval in Principle Date: May 26, 2006
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:
This course will introduce the students to the importance of the special Theory of Relativity and the Quantum Physics. The teaching emphasis will attempt to ensure the students have a good qualitative understanding of both theories along with an introduction to the equations which permit problems to be solved. Exams will include problem-solving questions along with descriptive problems. After successfully completing this course the students should be able to:

1. Describe the qualitative tenets of both theories;
2. State the fundamental postulates of each theory;
3. Solve kinematic and dynamical problems using the equations from the Special Theory of Relativity;
4. Solve Schrödinger’s wave equation for simple time independent cases;
5. Demonstrate how quantum mechanics is necessary for a deeper understanding of the principles of physics and chemistry;
6. Understand the importance and beauty of science to all of mankind.
7. Solve various problems in each of the topic areas listed in the Calendar Description section.

METHODS:
This course will be presented using lectures, tutorials, and demonstrations. Problems will be assigned and marked weekly.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):
Credit can be awarded for this course through PLAR (Please check:)

☐ Yes ☐ No

METHODS OF OBTAINING PLAR:
Please see the Physics PLAR policy on the department’s webpage

TEXTBOOKS, REFERENCES, MATERIALS:
[Textbook selection varies by instructor. An example of texts for this course might be:]

TEXTS: Randy Harris, Non-classical Physics: Addison Wesley (1998)

REFERENCES:
2. Bernstein, Fishbane, Gasiorowicz, Modern Physics
3. Einstein, A., The Stafford Little Lectures, 1921

SUPPLIES / MATERIALS:

STUDENT EVALUATION:
[An example of student evaluation for this course might be:]

Assignments 20%
Mid-term 30%
Final 50%

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]

A. Special Theory of Relativity
 1. History and Need for the Theory
 2. Lorentz Transformations
 3. Relativistic Kinematics
 4. Relativistic Dynamics

B. Modern Physics
 1. Quantization of Energy:
Thermal Radiation and Black Bodies
Heat capacities

2. Particle Nature of Radiation
 Photoelectric Effect
 Compton Effect

3. Wave Nature of Radiation
 Matter Waves
 Uncertainty Principle

4. The Old Quantum Theory
 Thomson's Model of the Atom
 Rutherford Model
 Bohr Model

5. An Introduction to Quantum Mechanics
 Wave Equation
 Schrodinger's Equation
 Simple solutions to Schrodinger's Equation