UNIVERSITY COLLEGE OF THE FRASER VALLEY

COURSE INFORMATION

DISCIPLINE/DEPARTMENT: PHYSICS
IMPLEMENTATION DATE: September 1995

PHYSICS 325
SUBJECT/NUMBER OF COURSE
DESCRIPTIVE TITLE
UCFV CREDITS
Fluid Mechanics
3

CALENDAR DESCRIPTION: Fluid mechanics is undergoing renaissance with the advent of personal computers. In this course we will examine the fundamental laws of fluid motion and use accompanying software to solve realistic problems.

RATIONALE: Student Demand

COURSE PREREQUISITES: Physics 231; Math 211, 212

COURSE COREQUISITES:

HOURS PER TERM
FOR EACH STUDENT
Lecture 60 hrs
Laboratory hrs
Seminar hrs
Field Experience hrs

STUDENT DIRECTED LEARNING hrs
OTHER - SPECIFY: hrs
TOTAL 60 HRS

MAXIMUM ENROLMENT: 35

Transfer credit requested? Yes No

AUTHORIZATION SIGNATURES:

Course Designer(s): R.W.M. Woodside, Ph.D
Chairperson: Art Last
Curriculum Committee

Department Head: Tim Cooper
Dean: Wayne Welsh, Ph.D

PAC: Approval in Principle ________________________________ (Date)
PAC: Final Approval: 29 11 95 (Date)

OUTLN95/01/dd

Page 2 of 3
SYNONYMOUS COURSES:

(a) replaces (course #)

(b) cannot take _______________ for further credit (course #)

SUPPLIES/MATERIALS:

N/A

TEXTBOOKS, REFERENCES, MATERIALS (List reading resources elsewhere)

Fluid Mechanics, Vol.6 of course of Theoretical Physics, L. D. Landau, Pergamon (1959)
Mechanics of Deformable Bodies, Vol 2 of Lectures on Theoretical Physics, A. Sommerfeld, Academic (1929)

OBJECTIVES:

To introduce the student to Fluid Mechanics

METHODS:

This course will be taught using lectures, demonstrations and accompanying software. Problems will be assigned and marked on regular basis.

STUDENT EVALUATION PROCEDURE:

Assignments 25%
Midterm Examinations 30%
Final Examinations 45%
<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Fox Chapter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Fundamental Concepts</td>
<td>2</td>
</tr>
<tr>
<td>3-4</td>
<td>Statics</td>
<td>3</td>
</tr>
<tr>
<td>5-6</td>
<td>Integral Equations In Control Volumes</td>
<td>4</td>
</tr>
<tr>
<td>6-7</td>
<td>Differential Analysis of Fluid Flow</td>
<td>5</td>
</tr>
<tr>
<td>7-8</td>
<td>Incompressible, Inviscid Flow</td>
<td>6</td>
</tr>
<tr>
<td>9</td>
<td>Dimensional Analysis or Similitude</td>
<td>7</td>
</tr>
<tr>
<td>10</td>
<td>Internal Incompressible Viscous flow</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Extremal incompressible Viscous Flow</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>Flow in Open Channels</td>
<td>10</td>
</tr>
<tr>
<td>13</td>
<td>Introduction to Compressible flow</td>
<td>12</td>
</tr>
</tbody>
</table>