OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department and material will vary - see course syllabus available from instructor.

FACULTY/DEPARTMENT:
PHYSICS

Phys 393 3

<table>
<thead>
<tr>
<th>COURSE NAME/NUMBER</th>
<th>FORMER COURSE NUMBER</th>
<th>UCFV CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPUTER ALGEBRA PHYSICS I</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CALENDAR DESCRIPTION:
This is the first of two courses designed to illustrate how computer algebra systems (CAS) can be used in physics. The emphasis is on using computer algebra methods to form, manipulate, simplify, and plot equations along with its ability to interactively answer "what if" questions. No prior knowledge of any CAS software is assumed or needed.

PREREQUISITES:
PHYSICS 221

COREQUISITES:
PHYSICS 221

SYNONYMOUS COURSE(S)
(a) Replaces:

<table>
<thead>
<tr>
<th>(Course #)</th>
<th>(Department / Program)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

(b) Cannot take

<table>
<thead>
<tr>
<th>(Course #)</th>
<th>(Department / Program)</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>

SERVICE COURSE TO:

<table>
<thead>
<tr>
<th>(Department / Program)</th>
</tr>
</thead>
</table>

TOTAL HOURS PER TERM: 45

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS</th>
<th>TRAINING DAY-BASED INSTRUCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 45 hrs</td>
<td>LENGTH OF COURSE:</td>
</tr>
<tr>
<td>Seminar: hrs</td>
<td>HOURS PER DAY:</td>
</tr>
<tr>
<td>Laboratory: hrs</td>
<td></td>
</tr>
<tr>
<td>Field Experience: hrs</td>
<td></td>
</tr>
<tr>
<td>Student Directed Learning: hrs</td>
<td></td>
</tr>
<tr>
<td>Other (Specify): hrs</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM ENROLMENT: 24

EXPECTED FREQUENCY OF COURSE OFFERING: Once every two or three years

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

AUTHORIZATION SIGNATURES:

Course designer(s): G. McGuire

Chairperson: (Curriculum Committee)

Department Head: G. McGuire

Dean: J. Snodgrass

PAC Approval in Principle Date: PAC Final Approval Date: March 28, 2001
LEARNING OBJECTIVES / GOALS / OUTCOMES/ LEARNING OUTCOMES:

Learning Objectives:
1. Students should be able to use a CAS to interactively form, manipulate, simplify, and solve equations.
2. Students should be able to use a computer to communicate, visually present, and discuss their solutions in a more efficient and effective manner.
3. Students should have a competent and working knowledge of the material enumerated in this course outline.

Goals:
1. To provide opportunities for the students to acquire and deepen their computer and physics problem-solving skills.
2. To provide opportunities for the students to enhance their critical and abstract reasoning skills.
3. To provide opportunities for the students to gain confidence in their problem-solving abilities.

Learning Outcomes:
1. Students who successfully complete this course should gain confidence in their ability to use their knowledge of physics and computers in a manner which makes them more employable.
2. Students should augment the skills needed to help ensure their success in other physics courses and in industry.

METHODS:

1. The computer algebra system used in this course will be Maple.
2. The course will need to be taught in a room containing computers. The upper-level physics lab might be used as an alternate room.
3. The teaching style will abandon the "sage on the stage" with its companion "talk and chalk" lecture style in favour of a more student "hands-on" and instructor facilitator approach.
4. The course contains enough extra material to allow the students to make choices and delve deeper into problems of their choice and interest.
5. A research problem will be assigned and the student will be expected to present their results to their classmates.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Credit can be awarded for this course through PLAR YES X NO ________

METHODS OF OBTAINING PLAR:

Demonstrate competence and understanding of both Maple and Physics. A take-home exam will be used to evaluate this understanding. The examination will be composed of problems similar to those in the course’s text.

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]

Recommended Readings:

SUPPLIES / MATERIALS:

1. The classroom must be computer equipped.
2. Although not essential, it is recommended that students have a home computer.
STUDENT EVALUATION:
[An example of student evaluation for this course might be:]

The course is to be evaluated by:

Marked assignments 40%
Research problem and report 20%
Final exam 40%

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]

1. The Graphs of Physics
 a. Data simulation and graphical evaluation
 b. Investigating and asking "what if" questions
 c. Topics: waves, similitude, gradient, contour plots, Fermat’s Principle

2. Deriving Model Equations
 a. Linear Correlation
 b. Multiple regression

3. Algebraic Models
 a. Examples from a variety of disciplines and areas

4. Monte Carlo Methods
 a. Random walks
 b. Monte Carlo Integration
 c. Probability Distributions

5. Phase Plane Portraits
 a. Stability
 b. Classification of nonlinear stationary points

6. Linear ODE Models
 a. Problems solving techniques
 b. Special functions: i.e., Bessel and Legendre ODE Models

7. Nonlinear ODE Models
 a. First order models
 b. Second order models
 c. Limit cycles