OFFICIAL UNDERGRADUATE COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department – see course syllabus available from instructor

PHYS 408

Physics/Science

COURSE NAME/NUMBER FACULTY/DEPARTMENT UFV CREDITS

Special Topics in Physics

3

COURSE DESCRIPTIVE TITLE

CALENDAR DESCRIPTION:

This class allows for students to study a topic in physics which is not included within the current course offerings of the department. Different topics will be identified by adding a letter to the course number, e.g. 408C, 408D. Interested students should contact the head of the Department of Physics for more information.

PREREQUISITES: 6 credits of PHYS 300 or above, and permission of the instructor

COURSE IMPLEMENTATION DATE: September 2010

COURSE REVISED IMPLEMENTATION DATE: October 2013

COURSE TO BE REVIEWED: (four years after UPAC approval) (month, year)

SYNONYMOUS COURSE(S):

(a) Replaces: (b) Cross-listed with: (c) Cannot take: for further credit.

SERVICE COURSE TO: (department/program)

TOTAL HOURS PER TERM: 100

TRAINING DAY-BASED INSTRUCTION:

Length of course: Hours per day:

STRUCTURE OF HOURS:

Lectures: Hrs

Seminar: 15 Hrs

Laboratory: Hrs

Field experience: Hrs

Student directed learning: 65 Hrs

Other (specify): project 20 Hrs

OTHER:

Maximum enrolment: 6

Expected frequency of course offerings: by request

(every semester, annually, every other year, etc.)

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only) Yes No

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Yes No

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Yes No

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department) Yes No

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE: Yes No

Course designer(s): Derek Harnett

Department Head: Norm Taylor Date approved: May 11, 2009

Supporting area consultation (UPACA1) Date of meeting: May 29, 2009

Curriculum Committee chair: Norm Taylor Date approved: May 29, 2009

Dean/Associate VP: Dan Ryan Date approved: September 1, 2009

Undergraduate Program Advisory Committee (UPAC) approval Date of meeting: October 2, 2009
LEARNING OUTCOMES:
Upon successful completion of this course, in a branch of physics not currently covered by the department’s undergraduate curriculum, students will be able to:

- demonstrate advanced knowledge of the area, through discussions, seminars, and written presentations
- solve problems at a level typical of an upper-year physics course
- identify key sources of information for self-guided study in the area in question i.e. books, journal articles, online resources, etc.
- study independently
- prepare moderate length presentations or seminars in topics in physics
- deliver effective oral presentations in topics in physics
- prepare a major written document on a topic in physics

METHODS: (Guest lecturers, presentations, online instruction, field trips, etc.)

- directed reading
- oral presentations
- written project
- lectures or labs, if appropriate

METHODS OF OBTAINING PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

☐ Examination(s) ☐ Portfolio assessment ☐ Interview(s)

☐ Other (specify):

☒ PLAR cannot be awarded for this course for the following reason(s): Requires direct supervision

TEXTBOOKS, REFERENCES, MATERIALS:
[Textbook selection varies by instructor. An example of texts for this course might be:]
The availability of texts and other materials will depend to a great extent on the chosen topic.

SUPPLIES / MATERIALS:

- library
- online resources, such as the Los Alamos pre-print server or the SPIRES database

STUDENT EVALUATION:
[An example of student evaluation for this course might be:]

1. oral presentations 45%
2. written project 55%

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]
The main purpose of this class is to allow students to study a branch of physics in which the department currently does not offer a course, possibly in preparation for graduate studies. Examples of such areas are astrophysics, atmospheric physics, biophysics, geophysics, oceanography, quantum field theory, string theory, photonics, and quantum computing. Specific course content will necessarily vary with the subject area, and each separate area will use a different letter attached to the course number.