OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department and the material will vary
+ see course syllabus available from instructor

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>SCIENCE/PHYSICS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 452</td>
<td>FORMER COURSE NUMBER</td>
</tr>
<tr>
<td>COURSE NAME/NUMBER</td>
<td>UCFV CREDITS</td>
</tr>
<tr>
<td>INTRODUCTION TO GENERAL RELATIVITY</td>
<td></td>
</tr>
</tbody>
</table>

CALENDAR DESCRIPTION:

General Relativity is Einstein’s Theory of Gravitation. It is the first theory that allows the properties of space-time to be determined by the matter contained in the space-time.

PREREQUISITES: PHYSICS 352
COREQUISITES: None

SYNONYMOUS COURSE(S)
(a) Replaces: N/A
(Course #)
(b) Cannot take: N/A
for further credit.
(Course #)

TOTAL HOURS PER TERM: 45
TRAINING DAY-BASED INSTRUCTION
STRUCTURE OF HOURS:
Lectures: 45 Hrs
Seminar: Hrs
Laboratory: Hrs
Field Experience: Hrs
Student Directed Learning: Hrs
Other (Specify): Hrs

MAXIMUM ENROLLMENT: 24
EXPECTED FREQUENCY OF COURSE OFFERINGS:
WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)
☐ Yes ☐ No
WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)
☐ Yes ☐ No
TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:
☐ Yes ☐ No

AUTHORIZATION SIGNATURES:

Course Designer(s): R. Woodside
Chairperson: Edith Camm (Curriculum Committee)
Department Head: George McGuire
Dean: J. Snodgrass
PAC Approval in Principle Date: PAC Final Approval Date: March 28, 2001
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:
This course completes the sequence 252, 352, 452. On completion of the course, a successful student will be able to understand and use Einstein's Theory of Gravity. Using GRII, a tensor package plug-in for Maple, the student will be able to do large tensor calculations in a stress-free manner - possibly even original, publishable work. To do this, the student will learn the language of differential geometry.

METHODS:
This course will be taught using lectures, demonstrations, and computer simulations. (GRII plug-in for Maple).

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):
Credit can be awarded for this course through PLAR (Please check:) ☒ Yes ☐ No

METHODS OF OBTAINING PLAR:
Course challenge

TEXTBOOKS, REFERENCES, MATERIALS:
[Textbook selection varies by instructor. An example of texts for this course might be:]
Visser, Thorne & Wheeler, Gravitation, Freeman (1973)

SUPPLIES / MATERIALS:

STUDENT EVALUATION:
[An example of student evaluation for this course might be:]
Assignments 25%
Mid-term examination 30%
Final examination 45%

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]
1. Special Relativity
2. Vectors in Special Relativity
3. Tensors in Special Relativity
4. Perfect Fluids in Special Relativity
5. Curved Manifolds
6. Physics in Curved Space-time
7. Einstein Equations
8. Gravitational Radiation
9. Spherical Solutions
10. Schwarzschild Geometry and Black Holes
11. Cosmology