OFFICIAL COURSE OUTLINE INFORMATION

Students are advised to keep course outlines in personal files for future use.

Shaded headings are subject to change at the discretion of the department and material will vary - see course syllabus available from instructor

<table>
<thead>
<tr>
<th>FACULTY/DEPARTMENT:</th>
<th>PHYSICS</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>PHYS 493</th>
<th>FORMER COURSE NUMBER</th>
<th>UCFV CREDITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYSICS 493</td>
<td>COMPUTER ALGEBRA PHYSICS II</td>
<td>3</td>
</tr>
</tbody>
</table>

COURSE NAME/NUMBER

FORMER COURSE NUMBER

UCFV CREDITS

COURSE DESCRIPTIVE TITLE

CALENDAR DESCRIPTION:

This course extends and augments the problem-solving skills of physics students taught in Physics 393. Problems amenable to solving with computer algebra systems will be emphasized. The problem-solving emphasis will be on the understanding of the physics and the checking whether the solution correctly predicts the correct physical behaviour.

PREREQUISITES:

PHYSICS 393 and PHYSICS 381

COREQUISITES:

PHYSICS 393; PHYSICS 381

SYNONYMOUS COURSE(S)

(a) Replaces:

(b) Cannot take for further credit

<table>
<thead>
<tr>
<th>SERVICE COURSE TO:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Department / Program)</td>
</tr>
</tbody>
</table>

TOTAL HOURS PER TERM: 45

<table>
<thead>
<tr>
<th>STRUCTURE OF HOURS:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lectures: 45 hrs</td>
</tr>
<tr>
<td>Seminar: hrs</td>
</tr>
<tr>
<td>Laboratory: hrs</td>
</tr>
<tr>
<td>Field Experience: hrs</td>
</tr>
<tr>
<td>Student Directed Learning: hrs</td>
</tr>
<tr>
<td>Other (Specify): hrs</td>
</tr>
</tbody>
</table>

MAXIMUM ENROLMENT: 24

EXPECTED FREQUENCY OF COURSE OFFERING: Once every two or three years

WILL TRANSFER CREDIT BE REQUESTED? (lower-level courses only)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
</table>

WILL TRANSFER CREDIT BE REQUESTED? (upper-level requested by department)

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
</table>

TRANSFER CREDIT EXISTS IN BCCAT TRANSFER GUIDE:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>X</th>
</tr>
</thead>
</table>

AUTHORIZATION SIGNATURES:

Course designer(s):

G. McGuire

Department Head:

G. McGuire

Chairperson:

(Curriculum Committee)

Dean:

J. Snodgrass

PAC Approval in Principle Date:

PAC Final Approval Date: March 28, 2001
LEARNING OBJECTIVES / GOALS / OUTCOMES / LEARNING OUTCOMES:

Learning Objectives:
1. Students should be able to demonstrate their acquired knowledge by being able to use a CAS to solve physics problems, especially those problems related to the material in this course outline.
2. Students should have acquired a competent and working knowledge of the physics enumerated in this course outline.

Goals:
1. To provide the students with the opportunities to learn and master new CAS methods and to practice the computer skills acquired in Physics 393.
2. To provide opportunities for the students to augment their physics problem-solving skills.
3. To provide opportunities for the students to enhance their critical and abstract reasoning skills.
4. To provide opportunities for the students to gain confidence in their problem-solving abilities.
5. To provide methods for students to assess whether they wish to continue their studies in physics.

Learning Outcomes:
1. Students who successfully complete this course should gain confidence in their ability to use their knowledge of physics and computers in a manner which makes them more employable.
2. Students who successfully complete this course should be better able to assess their chances of having a successful career in physics.
3. Students should have acquired many of the skills needed by industry or other employers who hire physics graduates.

METHODS:
1. The computer algebra system used in this course will be Maple.
2. The course will need to be taught in a room containing computers. The upper-level physics lab might be used as an alternate room.
3. The teaching style will abandon the "sage on the stage" with its companion "talk and chalk" lecture style in favour of a more student "hands-on" and instructor facilitator approach.
4. The course contains enough extra material to allow the students to make choices and delve deeper into problems of their choice and interest.
5. A research problem will be assigned and the student will be expected to present their results to their classmates.

PRIOR LEARNING ASSESSMENT RECOGNITION (PLAR):

Credit can be awarded for this course through PLAR YES X NO

METHODS OF OBTAINING PLAR:

Demonstrate competence and understanding of both Maple and Physics. A take-home exam will be used to evaluate this understanding. The examination will be composed of problems similar to those in the course’s text.

TEXTBOOKS, REFERENCES, MATERIALS:

[Textbook selection varies by instructor. An example of texts for this course might be:]

Recommended Readings:

SUPPLIES / MATERIALS:

Although not essential, it is recommended that students have a home computer.
STUDENT EVALUATION:
[An example of student evaluation for this course might be:]

The course is to be evaluated by:

Assignments 40%
Research problem discussion 20%
Final exam 40%

COURSE CONTENT:
[Course content varies by instructor. An example of course content might be:]

1. Difference Equations
 a. First order linear
 b. Second order linear
 c. Nonlinear equations
 d. Nonlinear models
 e. Numerical solving

2. Analytical Approaches
 a. Checking solutions
 b. Calculus of variations
 c. Fourier series
 d. FFT and the power spectrum

3. Fractal Patterns
 a. Difference equation patterns
 b. ODE patterns
 c. Cellular automata

4. Diagnostic Tools for Nonlinear Dynamics
 a. Poincaré section
 b. Bifurcation diagrams
 c. Lyapunov exponents
 d. Strange attractors

5. Linear PDE Models
 a. Separation of variables
 b. Models using diffusion and Laplace’s equation
 c. Wave equation models
 d. Semi-infinite and infinite domains

6. Solitons and Nonlinear PDE Models
 a. Solitary waves
 b. Graphically hunting solitons
 c. Analytic solition solutions

7. Simulating PDE Models
 a. Diffusion and waves equations
 b. Soliton collisions