

Investigations into the Pharmacological Impact of Mono- or Di-methoxy Substitutions on Chalcones in the Model Organism *Caenorhabditis elegans*

SFU

Curtis Pluga, Dr. Nabyl Merbouhb, Dr. Nathan Bialasa

a - Department of Biology. University of the Fraser Valley b - Department of Chemistry. Simon Fraser University

Introduction

- Chalcones are a class of organic compounds, many of which can be derived from plants¹
- Chalcones can have varied biological effects, ranging from lifespan extension to cytotoxicity^{2,3}
- Multiple chalcones have been shown to possess antibacterial and antimalarial activities⁴
- Some activate the SKN-1 transcription factor⁵
- Activation of human Nrf2 ortholog may have therapeutic applications⁶
- Literature on specific chalcones is limited and inconsistent
- Three different methoxy-chalcones were tested, shown below (Fig. 1)
- A 4'-methoxychalcone
- B 4,4'-dimethoxychalcone
- C 4-methoxychalcone

Figure 1. Structure of chalcones used in research study

Research Goal

The goal of this research is to investigate the effects of chalcones on the lifespan of *Caenorhabditis elegans* and whether altering the position of methoxy groups on the chalcone backbone alters these effects

Model Organism

- C. elegans is an approximately 1mm long nematode
- Easily cultured, short lifespan, highly characterized, and many available mutants
- High proteomic homology with humans

Lifespan Assay

- Assay performed in triplicate
- Synchronized population of *C. elegans* N2 strain prepared with a controlled egg lay
- 60 hours later, 10 L4 nematodes were placed onto each treatment and control plate (10 plates each)
 - Treatment plates contained chalcone at a concentration of 42 μ M (the optimal concentration in a study that demonstrated lifespan-extending effects of a chalcone)²
- Control plates contained equal volume of the solvent DMSO
- Nematodes were recorded as dead or alive every day until all were dead
- Counted as alive if any physical movement can be seen
- Censored if desiccated or missing

Lifespan Assay - Results

Figure 2. Kaplan-Meier Survivorship Curve. Percent survival of all treatments.

	N	Mean Lifespan (days)	95%	P-Value			
Treatment			Confidence	VC A	vs B	vs C	VS
			Interval	vs A			vs Control
Α	101	3.45	2.93 - 3.97	-	0.000	0.001	0.000
В	100	1.69	1.40 - 1.99	0.000	-	0.275	0.000
С	100	2.39	1.83 - 2.95	0.001	0.275	-	0.000
Control	100	12.47	11.65 - 13.29	0.000	0.000	0.000	-

Table 1. Mean lifespan of all treatments. Note statistical significance of all chalcone treatments versus control as well as chalcone A versus B and C. Statistics calculated using Excel 2-tail p-test.

SKN-1::GFP Localization Assay

- Assay performed in triplicate
- Utilized C. elegans LD1 strain
 - Has SKN-1::GFP expression construct
- Synchronized population prepared with a controlled egg lay
- 60 hours later, 30 L4 nematodes placed onto treatment and control plates
- 24 hours after treatment start, nematodes were anaesthetized, and photos were taken using Revolve microscope
- SKN-1 nuclear localization of each nematode was scored as low intermediate, or high, as shown below (Fig. 3)

Figure 3. Representative images for SKN-1::GFP Localization Assay.

SKN-1::GFP Localization Assay - Results

- Low, intermediate, and high nuclear localization were assigned scores of 0, 5, and 10
- All chalcones resulted in significant nuclear localization of
 Intermediate
 SKN-1 vs the control
 - Chalcone A resulted in significantly higher localization than chalcones B and C

Figure 4. Distribution of scores across all four conditions

Treatment	Mean Score	P-Value				
		vs A	vs B	vs C	vs Control	
Α	8.53	-	0.000	0.006	0.000	
В	4.62	0.000	-	0.279	0.180	
С	5.71	0.006	0.279	-	0.018	
Control	3.33	0.000	0.180	0.018	-	

Table 2. Quantified mean localization scores of all conditions. Note statistical significance of chalcones A and C vs control, as well as A vs B and C. Statistics calculated using Excel 2-tail p-test

Discussion & Future Research

- All three chalcones resulted in a significantly reduced lifespan versus the control (Fig. 2)
 - Methoxy substitution at the 4 position (the right side as shown) may result in increased toxicity
- We observed high mortality in first few days
- Chalcone A resulted in highest nuclear localization of SKN-1 (Fig. 4)
- This does not directly correlate to toxicity
- Lack of methoxy substitution at 4 position may correlate with increased nuclear localization of SKN-1
- Future research could further investigate expression of SKN-1 and downstream products through quantitative blots or qPCR
- Investigations into the initial exposure hours of each chalcone could be performed to obtain a clearer picture of the acute toxicity

Acknowledgements

- Special thanks to Dr. Jesper Johansen and the UFV lab technicians Avril, Fabiola, Jenny, and Valentina for all their invaluable advice and help
- Thank you to the UFV Security team for granting building access whenever campus was closed

References

- 1. Valavanidis, A., Vlachogianni, T. (2013). Plant Polyphenols: Recent Advances in Epidemiological Research and Other Studies on Cancer Prevention. Studies in Natural Products Chemistry, 39, 269-295. https://doi.org/10.1016/B978-0-444-62615-8.00008-4
- 2. Carmona-Gutierrez, D., Zimmerman, A., Kainz, K., Pietrocola, F., Chen, G., Maglioni, S., ... Madeo, F. (2019). The flavonoid 4,4'-dimethoxychalcone promotes autophagy-dependent longevity across species. *Nature Communications*, 10, 651.
- https://doi.org/10.1038/s41467-019-08555-w
 3. Yadav, V., Prasad, S., Sung, B., Aggarwal, B. (2011). The role of chalcones in suppression of NF-kappaB-mediated inflammation and cancer.

 International Immunopharmacology, 11, p. 295-309.
- 4. Salehi, B., Quiespe, C., Chamkhi, I., El Omari, N., Balahbib, A., Sharifi-Rad, J., ... Les, F. (2021). Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. *Frontiers in Pharmacology*, 11. DOI: 10.3389/fphar.2020.592654 5. Zhang, P., Zhai, Y., Cregg, J., Ang, K.K., Arkin, M., Kenyon, C. (2020). Stress Resistance Screen in Human Primary Cell Line Identifies Small
- Molecules That Affect Aging Pathways and Extend Caenorhabditis elegans' Lifespan. *G3: Genes, Genomes, Genetics, 10*, p.849-862

 6. Lim, J., Lee, S., Cho, S., Lee, I., Kang, B., Choi, H. (2013). 4-Methoxychalcone Enhances Cisplatin-Induced Oxidative Stress and Cytotoxicity by Inhibiting the Nrf2 (ARE-Mediated Defense Mechanism in A549 Lung Cancer Cells, Molecules and Cells, 36, p. 340-346

by Inhibiting the Nrf2/ARE-Mediated Defense Mechanism in A549 Lung Cancer Cells. *Molecules and Cells*, 36, p. 340-346.

DOI:10.1007/s10059-013-0123-9