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ABSTRACT

Amajor challenge in Computational Social Science consists in mod-

elling and explaining the temporal dynamics of human communica-

tion. Understanding small group interactions can help shed light on

sociological and social psychological questions relating to human

communications. Previous work showed howMarkov rewards mod-

els can be used to analyse group interaction in meeting. We explore

further the potential of these models by formulating queries over

interaction as probabilistic temporal logic properties and analysing

them with probabilistic model checking. For this study, we analyse

a dataset taken from a standard corpus of scenario and non-scenario

meetings and demonstrate the expressiveness of our approach to

validate expected interactions and identify patterns of interest.

KEYWORDS

Small groups, social sequences, Markov rewards models, probabilis-

tic temporal logic, probabilistic model checking

ACM Reference Format:

Oana Andrei and Gabriel Murray. 2018. Interpreting Models of Social Group

Interactions in Meetings with Probabilistic Model Checking. In Proceedings
of Group Interaction Frontiers in Technology (GIFT’18). ACM, New York, NY,

USA, 7 pages.

1 INTRODUCTION

A major challenge in Computational Social Science [6, 12, 15] con-

sists in modelling and explaining the temporal dynamics of human

communications. Which interactions lead to more successful com-

munication or productive meetings? How can we infer temporal

models of interactions? How can we explain what these temporal

interaction really mean? Current statistical analysis techniques do

not explore the full temporal aspect of time-series data generated

by interactive systems, and certainly they do not address complex

queries involving temporal dependencies.

We investigate Markov rewards models (also called discrete-time

Markov chains with rewards) for human-human interactions in

social group meetings and how to interpret them. We identify var-

ious queries predicating over the temporal interactions between

different roles, the impact of different sentiments in interactions or

in decision making, causality between particular states, etc. We use

probabilistic computational tree logic (PCTL) with rewards [4, 11],

which is a type of probabilistic temporal logic variant, to formalize

these queries. We then use the PRISM tool [11], a symbolic proba-

bilistic model checker, to analyse the formal queries and thus in-

terpret the temporal interaction models. Probabilistic model check-

ing [4] is a well-established verification technique that explores all

possible states of a Markov model in a systematic and exhaustive

manner, and computes the probability that a temporal property of

the system under analysis holds. We can ask queries such as ‘What
is the average count of the project manager’s interventions until a
decision is taken?’, ‘What is the probability of a decision to be taken
without anybody commenting about their understanding?’, or ‘What
is the average interaction count from one decision to another decision
without a negative sentiment being expressed in the interim?’. Fig-
ure 1 illustrates the method we propose for probabilistic modeling

analysis of social group behaviour.

The main contribution of this paper consists in empirically

demonstrating the expressiveness of probabilistic temporal logic

properties and probabilistic model checking for the analysis of

temporal dynamics of social group interactions in meetings.

2 RELATEDWORK

Our work is most closely related to the Markov Rewards Model by

Murray [13, 14] for analyzing and querying social sequences. In that

work, social interactions are represented as a sequence of states,

and particular states are associated with rewards or costs that are

dependant on the query being asked. A Value Iteration algorithm is

then used to estimate the expected value of every state, with a state’s

value indicating how it is related to the outcome of interest being

queried. In our work, we will use the same state representation as

Murray, but show that our probabilistic model checking framework

allows us to ask queries that would be difficult or impossible to

ask in the Markov Rewards Model framework. More generally, our

approach is an example of social sequence analysis [7], where the
goal is to analyze patterns in social sequences or to compare social

sequences to one another. These social sequences might unfold at

the macro scale (over days or weeks) or at the micro scale (over

minutes or hours), and the present work is concerned with social

sequences at the micro scale.

The past decade has seen an increasing amount of work on

developing technologies for supporting meetings, including the

use of machine learning for making predictions on meeting data.

This includes detection of decision items [10] and classification of

dialogue act types [8], in addition to predictions for many other

meeting phenomena [16]. The field of Social Signal Processing (SSP)

consists of work that examines social interaction through primarily

nonverbal cues [18], such as gesture, gaze, and prosody. There is

also a growing inter-disciplinary field of meeting science that aims

to understand the processes that take place before, during, and after

meetings [1].

3 CORPUS

The dataset used in this paper is the Augmented Multimodal Inter-

action (AMI) meeting corpus [5]. Each meeting group in the corpus

consists of four people, and the group completes a sequence of



Figure 1: Overall process of modeling and analysis of group interactions

four meetings where they are role-playing as members of a com-

pany that is designing and marketing a product. Each person in

the group is assigned a role; the roles are Project Manager (PM),

Marketing Expert (ME), User Interface Designer (UI), and Industrial

Designer (ID). Despite the artificial scenario and the assigned roles,

the speech is spontaneous and unscripted, and each group is free

to make decisions as they see fit. We discuss further aspects of the

corpus in Section 4.1, where we describe the state representation

used in this work.

4 PROBABILISTIC TEMPORAL MODELLING

AND ANALYSIS OF INTERACTION

In this section we describe the state representation used in our

Markov models, the probabilistic temporal logic properties and

reward structures used for formalising queries about group interac-

tions captured by the Markov model, and the probabilistic model

checker PRISM used for formally analysing these queries.

4.1 Markov models of social group interactions

In our representation of social sequences in meeting, each state is

labelled by a 5-tuple consisting of the following information:

(1) the participant’s role in the group: PM (Project Manager),

ME (Marketing Expert), UI (User Interface Designer), and ID

(Industrial Designer);

(2) the dialogue act type taking one of the 15 values listed and

briefly described in Table 1;

(3) the sentiment being expressed: nosentiment, positive, nega-

tive, posneg (both);

(4) whether the utterance involves a decision: nodecision, deci-

sion;

(5) whether the utterance involves an action item: noaction,

yesaction.

In addition to the complex states described in the preceding sec-

tion, there are START and STOP labeled states representing the

beginning and the end of a meeting.

Example states include the following:

• <PM-bck-positive-nodecision-noaction> describes the sit-

uation where the project manager makes a positive back-

channel comment, unrelated to a decision or action;

• <PM-el.ass-nosentiment-nodecision-yesaction> represents

the project manager eliciting feedback about an action item;

Table 1: Dialogue Act Types

ID Description

fra fragment

bck backchannel

stl stall

inf inform

el.inf elicit inform

sug suggest

off offer

el.sug elicit offer or suggestion

ass assessment

und comment about understanding

el.ass elicit assessment

el.und elicit comment about understanding

be.pos be positive

be.neg be negative

oth other

• <UI-sug-nosentiment-decision-noaction> represents the UI

expert making a suggestion about a decision item.

The Markov aspect of the Markov models is that the probability

of a given state depends only on the preceding state in the sequence.

The state transition probabilities are estimated directly from the

transition counts in the data. This way we obtain a discrete-time

Markov model of the behaviour seen in the meeting data, where

the states labels and the transition probability function are defined

as above, the initial state is labelled by START. A path in a Markov

model is a non-empty sequence of states such that the transition

probability from one state to the next one in the sequence is strictly

greater than zero.

4.2 Probabilistic temporal logic and model

checking

Probabilistic model checking is a technique for modelling and

analysing stochastic systems, usually focused on investigating cor-

rectness properties of the real-life system. It requires an abstract,

high-level description of the system and specifications of the prop-

erties expressed in a suitable temporal logic. In the first step a

probabilistic model checker tool builds a model of the system from



its description, typically a Markov model (e.g., discrete time Markov

chain, continuous time Markov chain, or Markov decision process).

In the second step, the tool uses model checking algorithms to verify

automatically if a temporal logic property is satisfied or not, or to

compute the probability of a temporal logic formula to hold. These

model checking algorithms explore the model in an systematic and

exhaustive way.

Probabilistic Computation Tree Logic (PCTL) [4, 11] is a proba-

bilistic branching-time temporal logic that allows one to express a

probability measure of the satisfaction of a temporal property by a

state of a discrete-time Markov model. The syntax is the following:

State formulae:
Φ ::= true | a | ¬Φ | Φ ∧ Φ | P▷◁ p [Ψ] | S▷◁ p [Φ]

Path formulae:
Ψ ::= XΦ | ΦU≤N Φ

where a represents an atomic proposition, ▷◁ ∈ {≤, <, ≥, >}, p ∈
[0, 1], and N ∈ N∪ {∞}. The operators X and U are called the neXt

and the Until operators respectively.

PCTL formulae (or properties) are interpreted over states of a

Markov model, with state formulae Φ evaluated over states and

path formulae Ψ over paths. We say that a Markov model satisfies a

state formulae Φ if the initial state of model satisfies Φ. We denote

by s |= Φ that state s satisfies Φ (or Φ is evaluated to true in state s)
and this satisfaction relation is defined inductively as follows:

• s |= true is always true;
• s |= a if and only if a is an atomic proposition labelling the

state s;
• s |= ¬Φ if and only if s |= Φ is false;

• s |= Φ1 ∧ Φ2 if and only if s |= Φ1 and s |= Φ2;

• s |= P▷◁ p [Ψ] if and only if the probability that the path

formula Ψ is satisfied by the paths starting from state s meets

the bound ▷◁ p;
• s |= S▷◁ p [Φ] if and only if the steady-state (or long-run)

probability of being in a state that satisfies the state formula

Φ meets the bound ▷◁ p.

For a path π starting from a state s , we define the satisfaction
relation π |= Ψ as follows:

• π |= XΦ is true if and only if Φ is satisfied in the next state
following s in the path π ;
• π |= Φ1 U≤N Φ2 is true if and only if Φ2 is satisfied within

N time steps and Φ1 is true up until that point where Φ2 is

satisfied for the first time.

The syntax above includes only a minimal set of operators; the

propositional operators false, disjunction ∨ and implication =⇒

can be derived. Two common derived path operators are: the eventu-
ally operator F where F≤n Φ ≡ trueU≤n Φ and the always operator
G where GΨ ≡ ¬(F¬Ψ). If N = ∞, i.e., the until operator U is not

bounded, then the superscript is omitted.

For example, how do we check whether the probability of reach-

ing a yesaction within 50 utterances while the sentiment being ex-

pressed is not a positive one is greater than 0.75? The corresponding

PCTL property represented as P≥0.75[¬ “positive”U≤50 “yesaction”].
The model checking algorithm computes the reachability proba-

bility for all states satisfying the atomic proposition “yesaction”
provided that all previous states visited do not satisfy the atomic

proposition “positive”; if the resulting probability is greater than

0.75 then the model checking problem returns true; otherwise it

returns false.

PRISM is a probabilistic model checker [11] used for formal mod-

elling and analysis of systems that exhibit random or probabilistic

behaviour. Its high-level state-based modelling language supports

a variety of probabilistic models, including discrete-time Markov

chains. In PRISM we can replace the bounds ▷◁ p in the proper-

ties with =? and thus obtain the numerical value that makes the

property true. PRISM also allows models to be augmented with

reward structures, which assign positive real values to states and/or

transitions for the purpose of reasoning over expected or average

values of these rewards. In PRISM we can specify the following

reward-based temporal properties:

• Rrwd=?
[
C≤N

]
in a state s computes the expected value of

the reward named rwd accumulated along all paths starting

from s within N time-steps.

• Rrwd=? [ F Φ ] in a state s computes the expected value of

the reward named rwd accumulated along all paths starting

from s until the state formula Φ is satisfied.

In PRISM, filters check for properties that hold when starting

from sets of states satisfying given propositions. In this paper we

use the filter operators state and avg in the following two types

of properties:

• filter(state,Φ, cond1) evaluates the satisfaction of the

state formulaΦ in the state uniquely identified by the Boolean

proposition cond1;
• filter(avg,Φ, cond2) computes the average over all states

where cond2 is true.

In the following, for convenience, we refer to PCTL properties

with or without rewards simply as properties or queries, though

strictly they also include PRISM operators.

5 EXPERIMENTS AND RESULTS

In this section, we first define the behavioural model used, followed

by a set of queries, their encoding as probabilistic temporal logic

properties, and their results, which demonstrate the flexibility and

expressiveness of the method presented in this paper.

5.1 Defining a behavioural model of social

group interactions

The behavioural model is a Markov rewards model initially inferred

as described in Section 4.1 to which we add labels and reward

structure definitions as required by the queries. In our case the

atomic propositions associated with each state are the state labels

and the individual particles composing the state label.

The PRISM model encoding the Markov model for the input

data set considered for this paper as well as the PRISM properties

analysed later in this paper are available at http://www.dcs.gla.

ac.uk/~oandrei/resources/imsgi_gift18. The PRISM model has a

relatively small state space of 196 reachable states (out of 269 states

in total) and 4002 transitions, therefore the model checking process

for one temporal property is not time-consuming (under 0.1 seconds

for all instances of the properties listed in the next section).

We defined the following reward structures:

http://www.dcs.gla.ac.uk/~oandrei/resources/imsgi_gift18
http://www.dcs.gla.ac.uk/~oandrei/resources/imsgi_gift18


• r_Steps assigns a value of 1 to each transition or time-step.

We use this reward structure when computing the average

number of time-steps (i.e., interactions) from one state to

another state.

• r_roleLabel is a template reward structure which assigns

a value of 1 to each state labelled by roleLabel. Since there
are four participant roles in the data set, we have four reward

structures r_PM, r_ME, r_UI, and r_ID. For example, we can

use the reward structure r_PM to compute the average visit

count to a PM state until reaching a state tuple which in-

cludes decision, i.e., the average number of PM interventions

until a decision is make.

• r_roleLabel_decision is also a template reward structure

which assigns a value of one to each state labelled by one

instance of roleLabel (either PM, ME, UI, or ID) and by

decision. For example, we can use the reward structure

r_PM_decision to compute the average number of PM in-

terventions concerning a decision until reaching a decision

state where ME intervenes.

5.2 Querying the Markov model

We use the command line of the PRISM tool to execute each of the

queries presented in this section through the probabilistic model

checking engine and export the results. For some of the PRISM

properties below we make the following notation for the sake of

brevity. We use the placeholder roleLabel to be instantiated with

any of the roles PM, ME, UI, or ID. The atomic proposition y=j
refers to the state variable y in the PRISM model with the identifier

j; in this case j takes values from 0 to 268.

5.2.1 Queries for validating the model. We first start with examples

of queries and results that confirm our expectations about meetings

generally and the AMI scenario specifically. For example, some

of the results reflect the fact that project managers (PM) tend to

begin meetings, and – in the AMI scenario, at least – are the most

active participants. Some of the results of this first set of queries

are merely artifacts of the AMI scenario, and in particular of the

fact that participants are assigned clearly-defined roles and have to

progress through distinct phases of a role-playing exercise.

We then move on to queries and results that generate more

insight into meeting interactions.

Q1: How long does it typically take in a meeting before each

type of role has participated?

These queries are encoded in PRISM as:

R{"r_Steps"}=?[F "PM"]
R{"r_Steps"}=?[F "ME"]
R{"r_Steps"}=?[F "ID"]
R{"r_Steps"}=?[F "UI"]

Each of the PRISM queries above computes the average accumulated

number of time steps (or interactions) it takes to reach a state

corresponding to a particular role. The actual average number of

steps is computed using the transition reward r_Steps.
The analysis results are 2.13 time steps for PM, 5.26 for ME, 5.99

for ID, and 6.03 for UI. This is an intuitive (and expected) result,

showing that the project manager (team leader) tends to begin the

meeting discussions, but also that all members participate early on

in the discussion.

Q2: How long does it typically take in a meeting before each

type of non-PM role has participated after a Project Man-

ager?

The PRISM properties encoding of Q2 are:

filter(avg, R{"r_Steps"}=?[F "ME"], "PM")
filter(avg, R{"r_Steps"}=?[F "ID"], "PM")
filter(avg, R{"r_Steps"}=?[F "UI"], "PM")

Such properties compute the average number of time steps taken

from a PM intervention until a specific non-PM participant inter-

venes. The model checking results, in increasing order, are: 4.82

for ME, 5.28 for ID, 5.81 for UI. This shows that ME is quicker in

reacting after a PM intervention than ID and UI. Since the partici-

pant roles are specific to the AMI corpus, these results are likely

just reflecting the structure of the AMI scenario itself.

Q3: At the time that a first decision has been made, what is

the proportion of activity by each participant? In other words,

this query refers to the average number of times a type of par-

ticipant role intervenes until eventually a decision is made. Let

χ3 (roleLabel ) denote the PRISM property computing the average

visit counts to a roleLabel state until a devision is made:

R{"r_roleLabel"}=?[F "decision"]

Then the PRISM property encoding Q3 is:

χ3 (roleLabel )/(χ3 (PM ) + χ3 (ME) + χ3 (U I ) + χ3 (ID))

Checking this property instantiated with each of the four roles,

we obtain that PM participates 32%, ME 24%, while UI and ID are

participating in equal measure at 22%. This results reflect the fact

that project managers tend to be more dominant in the meeting

discussions, and in particularly in regards to decision-making.

Q4: Howmany times in average a PM (or some other role) is

involved in decision-making within 100 time steps?

Let χ4 (roleLabel ) denote the PRISM property that computes the

average visit counts to stateswhere roleLabelmade a decisionwithin

100 time steps:

R{"r_roleLabel_decision"}=?[C<=100]

Then the PRISM property encoding Q4 is:

χ4 (roleLabel )/(χ4 (PM ) + χ4 (ME) + χ4 (U I ) + χ4 (ID))

After checking the four instances of this property, we obtain

the following results: 86% for PM, 9% for UI, 3% for ID, and 1%

for ME. As expected, project managers are making the majority

of decisions, and the differences between the other three roles are

likely an artifact of the AMI scenario.

Q5: Which type of non-PM roles is more participatory fol-

lowing a PM within 100 time steps?

The PRISM property encoding this query averages over all PM

states the visit counts to roleLabel within 100 time steps:

filter(avg, R{"r_roleLabel"}=?[C<=100], "PM")

and the results of model checking it are: 36% for ME, 33% for ID,

and 32% for UI.

This shows that the non-PM roles are approximately equally

likely to participate after the PM, with the ME being slightly more

frequent. Again, this may be an artifact of the AMI scenario.

Q6: Which roles with positive sentiment have the highest

probability in the long-run?

The PRISM property encoding this query looks at the probability

in the long-run to be in a particular type of role with a positive

sentiment:



S=?["roleLabel" & "positive"]

and the results are as follows: 34% for PM, 32% for ME, 18% for ID,

16% for UI.

These results largely reflect the fact that the PM tends to be most

active person in the AMI meeting discussions.

5.2.2 Queries for further exploration of interactions. Many of the

preceding sets of queries and results conform to our expectations

about meeting behaviour and the AMI scenario. We now turn to a

set of queries and results that generate more valuable insight into

meeting interactions.

Q7:Whichnon-decision states aremost valuable in contribut-

ing to decisions being made within 100 time-steps?

The PRISM property encoding this query computes the probabil-

ity of reaching a decision state within 100 time-steps when starting

from a specific non-decision state:

filter(state, P=?[F<=100 "decision"], (y=j)&"nodecision")

The top ten most valuable non-decision states (i.e., most likely to

lead to a decision within 100 time-steps) are the following:

State Label Result

PM_stl_positive_nodecision_noaction 0.2870

PM_fra_positive_nodecision_noaction 0.2699

ID_stl_positive_nodecision_noaction 0.2649

ID_bck_positive_nodecision_noaction 0.2486

PM_stl_negative_nodecision_noaction 0.2450

ME_stl_negative_nodecision_noaction 0.2420

PM_sug_positive_nodecision_noaction 0.2219

PM_inf_negative_nodecision_noaction 0.2204

PM_stl_posneg_nodecision_noaction 0.2187

PM_off_positive_nodecision_noaction 0.2142

The most noticeable trend is that states containing sentiment –

both positive and negative – are highly associated with decision-

making. A second trend is that non-decision states belonging to the

PM are highly associated with decisions being made. Both of these

findings are intuitive; for example, participants tend to express a

variety of opinions before mutually deciding on a solution or course

of action.

Q8: Which PM states tend to lead to more participation by

non-PM participants within 50 time-steps?

The corresponding PRISM property for the ME role sets a reward

of 1 for each visit of a ME state and hence computes the average

visit counts to ME states within 50 time-steps when starting from a

specific PM state.

filter(state, R{"r_ME"}=?[C<=50], (y=j) & "PM")

The top ten results in terms of average count of ME interventions

are:

State Label Result

PM_elUnd_negative_nodecision_noaction 12.7667

PM_bck_positive_nodecision_noaction 12.3441

PM_off_positive_nodecision_noaction 12.3024

PM_oth_positive_nodecision_noaction 12.2464

PM_ass_posneg_nodecision_noaction 12.1870

PM_off_negative_nodecision_noaction 12.0611

PM_beNeg_nosentiment_nodecision_noaction 11.9997

PM_bck_nosentiment_nodecision_noaction 11.9907

PM_elInf_positive_nodecision_noaction 11.9819

PM_ass_positive_nodecision_noaction 11.9564

The PRISM property for the UI role is:

filter(state, R{"r_UI"}=?[C<=50], (y=j) & "PM")

and the results in terms of average count of UI interventions are:

State Label Result

PM_oth_negative_nodecision_noaction 10.7655

PM_ass_nosentiment_decision_noaction 10.7637

PM_und_positive_nodecision_noaction 10.7478

PM_elAss_negative_nodecision_noaction 10.7231

PM_bePos_positive_nodecision_noaction 10.7143

PM_elAss_nosentiment_decision_noaction 10.7064

PM_bck_nosentiment_nodecision_noaction 10.6959

PM_elInf_negative_nodecision_noaction 10.6893

PM_elInf_nosentiment_nodecision_noaction 10.6765

PM_elAss_nosentiment_nodecision_noaction 10.6639

The PRISM property for the ID role is:

filter(state, R{"r_ID"}=?[C<=50], (y=j) & "PM")

and the results in terms of average count of interventions are:

State Label Result

PM_inf_nosentiment_decision_yesaction 11.3406

PM_elInf_nosentiment_decision_noaction 11.2798

PM_elAss_positive_decision_noaction 11.2502

PM_bck_positive_nodecision_noaction 11.0955

PM_sug_posneg_nodecision_noaction 11.0941

PM_elAss_nosentiment_decision_noaction 11.0753

PM_off_negative_nodecision_noaction 11.0621

PM_sug_positive_decision_noaction 11.0404

PM_elAss_positive_nodecision_noaction 11.0204

PM_elInf_nosentiment_nodecision_noaction 11.0080

These results tell us that the PM is particularly likely to get

participation from other members when he or she explicitly seeks

input (e.g. elAss and elInf dialogue act types) and when expressing

sentiment.

Q9: Which non-sentiment states are highly associated with

positive sentiment?

The PRISM property encoding this query looks at each state

tuple with no sentiment being expressed and then computes the

probability of the next state to include a positive sentiment:

filter(state,P=?[X "positive"], (y=j) & "nosentiment")

The top ten non-sentiment states most likely to be associated

with positive sentiment in the next state are the following:



State Label Result

PM_elAss_nosentiment_decision_noaction 0.1456

PM_elInf_nosentiment_decision_noaction 0.0825

ID_und_nosentiment_nodecision_noaction 0.0510

ME_beNeg_nosentiment_nodecision_noaction 0.0505

PM_off_nosentiment_nodecision_yesaction 0.0408

PM_elAss_nosentiment_nodecision_noaction 0.0319

ME_elAss_nosentiment_nodecision_noaction 0.0319

ME_elSug_nosentiment_nodecision_noaction 0.0312

ID_elUnd_nosentiment_nodecision_noaction 0.0306

ID_elSug_nosentiment_nodecision_noaction 0.0297

These results show that states containing dialogue acts that

are explicitly eliciting information (e.g. elAss, elSug, elUnd, elInf)

are likely to be followed by expressions of positive sentiment. In

particular, the top state represents the PM explicitly seeking an

assessment from one or more of the other group members, and this

is very likely to be followed by a positive sentiment state.

Q10:Which non-sentiment states are highly associated with

negative sentiment?

Similar to Q9, the PRISM property encoding Q10 is:

filter(state,P=?[X "negative"],(y=j) & "nosentiment")

The top ten non-sentiment states most highly associated with

negative sentiment in the next state are the following:

State Label Result

ME_elUnd_nosentiment_nodecision_noaction 0.01923

ID_elAss_nosentiment_nodecision_noaction 0.01064

UI_elSug_nosentiment_nodecision_noaction 0.01064

ME_bck_nosentiment_nodecision_noaction 0.01053

ME_inf_nosentiment_decision_noaction 0.01042

ME_off_nosentiment_nodecision_noaction 0.01010

PM_elSug_nosentiment_nodecision_noaction 0.00990

UI_inf_nosentiment_decision_noaction 0.00962

Interestingly, states that explicitly elicit information and belong

to somebody other than the PM are associated with negative sen-

timent. This result coupled with the previous result suggest that

participants may be eager to please the PM through expressions

of positive sentiment and agreement, and more willing to express

negative sentiment to non-PM participants.

Q11:Which non-decision states that occur early inmeetings

tend to cause decisions to be made quickly?

The PRISM property encoding this query is:

P=?[F<=50 ((y=j) & "nodecision" & P>=1[X "decision"])]

where we considered early meetings to be within 50 time steps.

This property computes the probability of eventually (i.e., in the

Future) to reach a nodecision state identified by j within 50 time

steps and in the neXt state a decision is taken (with probability 1).

The top ten results (states j and probabilities) are the following:

StateLabel Result

PM_inf_nosentiment_nodecision_noaction 0.9677

PM_stl_nosentiment_nodecision_noaction 0.8047

ID_bck_nosentiment_nodecision_noaction 0.6589

UI_stl_nosentiment_nodecision_noaction 0.5329

ID_elInf_nosentiment_nodecision_noaction 0.1977

PM_off_nosentiment_nodecision_noaction 0.1639

ID_und_nosentiment_nodecision_noaction 0.1286

PM_elSug_nosentiment_nodecision_noaction 0.1120

UI_oth_nosentiment_nodecision_noaction 0.1093

ID_off_nosentiment_nodecision_noaction 0.0715

Interestingly, none of these states involve sentiment, and they

belong to a variety of the roles. However, the top two results both

belong to the PM. This reveals that sentiment and decision-making

are less associated with each other early on in the meetings.

Q12: If one person expresses positive sentiment, does it lead

to other people expressing positive sentiment?

We compare the average probability of expressing one type of

sentiment after another or the same type of sentiment using the

following PRISM properties and their results:

Property Result

filter(avg,P=?[F "positive"],"positive") 0.46

filter(avg,P=?[F "positive"],"negative") 0.19

filter(avg,P=?[F "negative"],"negative") 0.30

filter(avg,P=?[F "negative"],"positive") 0.04

For example, the last property above computes for each positive
state s the probability of reaching a negative state when starting

from s , and then returns the average over all positive states s .
These results show that an expression of positive sentiment

is very likely to be followed by another expression of positive

sentiment, and similarlywith negative sentiment following negative

sentiment. It is less common for negative to follow positive and vice-

verse, which is partly reflecting the fact that negative sentiment is

much less common in this corpus.

Q13: If a PM person expresses positive sentiments, what is

the probability that it leads to positive sentiment expressed

by a non-PM person?

This query is a form of causality relation between positive sen-

timents expressed by a PM person and a non-PM person. We for-

malise query Q13 as a probabilistic constrained response [9] where

we instantiate roleLabel by ME, UI, or ID:

P>=1 [G (("PM" & "positive") =>
P>=p [(!("roleLabel" & "negative") &

!("PM" & "negative"))
U<=N ("roleLabel" & "positive")])]

This PRISM property states the following: whenever PM expresses

positive sentiment then, with probability greater thanp, roleLabel
and PM do not express negative sentiment until roleLabel ex-

presses a positive sentiment within N time steps.

This property helps us identify the maximum probability p for

which the answer to the query is true when instantiating the

roleLabel for non-PM roles. For N = 100, then the maximum

probabilities p for which the answers to Q13 are true are 0.1 for

ME, 0.06 for ID, and 0.05 for UI respectively. For N = 500, then the



maximum probabilities p for which the answers to Q13 are true

are 0.4 for ME, 0.25 for ID, and 0.25 for UI. We conclude that ME is

approximately twice as likely than ID and UI to respond positively

to a PM positive sentiment.

This result is likely to reflect the structure of the AMI scenario.

It tells us that the ME has a great deal of responsibility and can

perhaps be seen as a secondary leader of the meeting.

6 CONCLUSION

In this paper we demonstrated the expressiveness of probabilistic

temporal logic properties for formalising various probabilistic and

reward-based queries about group interactions in meetings and

then analysed them with the probabilistic model checker PRISM

and interpreted them for the AMI corpus.

Some of the queries analysed above do not need probabilistic

temporal logic properties to be asked on the initial data set. How-

ever, all queries involving bounded time steps and in particular the

steady-state properties, e.g. Q11 and Q13, cannot be expressed in

any other way than as temporal property formulae. The queries Q1

- Q6 validate our behavioral model as their results confirm expected

interactions, while the queries Q7 - Q13 highlight novel insight into

the AMI dataset we analysed.

In this paper we analysed the Markov model inferred from state

transitions counts in the data. For future work we will consider

admixturemodels inferred from the data using classical Expectation-

Maximisation algorithms where each component (associated with a

latent variable) in the admixture model models a particular pattern

of behaviour, similar to the work of [2, 3]. The challenge will be

in identifying suitable classes of probabilistic temporal properties

for characterising and discriminating between the patterns for the

particular type of interaction data contained AIM corpus.

In future work, we will experiment with alternative state rep-

resentations, particularly representations that are less specific to

the AMI corpus scenario and its roles. For example, we will in-

clude demographic characteristics such as gender and the native

language of the speaker. We will also apply this representation and

methodology to other group interaction datasets such as the ELEA

corpus [17].
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