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Abstract. Lexical and acoustic markers in spoken language can be used
to detect mild cognitive impairment (MCI), a condition which is often a
precursor to dementia and frequently causes some degree of dysphasia.
Research to develop such a diagnostic tool for clinicians has been hin-
dered by the scarcity of available data. This work uses domain adaptation
to adapt Alzheimer’s data to improve classification accuracy of MCI.
We evaluate two simple domain adaptation algorithms, AUGMENT and
CORAL, and show that AUGMENT improves upon all baselines. Addi-
tionally we investigate the use of previously unconsidered discourse fea-
tures and show they are not useful in distinguishing MCI from healthy
controls.
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1 Introduction

Mild cognitive impairment (MCI) is a non-specific diagnosis characterized by
cognitive decline that is less severe than dementia and does not significantly
interfere with activities of daily living [1]. Population-based studies estimate
its prevalence to be between 12-18% in people over the age of 60 [2]. While a
proportion of patients will revert to normal cognition or stay mildly impaired, 8-
15% annually will progress to dementia [2]. MCI can be due to neurodegenerative
(most commonly, but not exclusively, Alzheimer’s dementia(AD)) or reversible
causes, including psychiatric illness or metabolic disturbances including thyroid
disease or vitamin B12 deficiency [3].

As MCI can involve a number of potential underlying causes, there are no
specific treatments. However, early diagnosis can affect testing for potentially
treatable causes, allow for optimization of vascular risk factors that may accel-
erate onset of dementia, prompt further diagnostic testing, and better allow for
planning for social supports and closer medical follow-up.



With recent improvements in natural language processing (NLP) and ma-
chine learning, there has been a push to use speech processing to develop a
tool to assist clinicians in diagnosis of “Alzheimer’s disease and other demen-
tias” (ADOD)4. Clinical research has shown that dysphasia is common among
ADOD. Weiner et al. found a significant association between cognitive test scores
and multiple language measures, including language fluency, animal naming and
repetition [4–6]. However, building a similar diagnostic tool for MCI presents a
challenge due to the limitations involved in data collection. MCI data is difficult
to acquire due to limited time resources available for detailed assessment in pri-
mary care settings [7], insufficient sensitivity to MCI of screening tools such as
the Mini Mental Status Exam [8], and limited access to primary care.

A technique that can be used to address this challenge is domain adaptation
(also known as “transfer learning”). The situation often arises when one has a
limited amount of data related to a problem of interest (the “target domain”),
but a large amount of data from a separate but related problem (the “source
domain”). Domain adaptation is the task of leveraging (“adapting”) data from
the source domain so that it can be used in the target domain. More specifically,
we wish to use data collected from persons with AD to improve our classification
accuracy for persons with MCI.

The main contribution of this work is to demonstrate the efficacy of do-
main adaptation in using AD data to improve our ability to diagnose MCI. We
compare two domain adaptation algorithms, AUGMENT and CORAL, both of
which are simple to implement and have been successfully applied on a range of
datasets, and show AUGMENT improving upon all baselines. These algorithms
are discussed in detail in section 2.3. A secondary contribution of this work is
in testing the usefulness of a new set of “discourse” features, as discussed in
section 2.2, which have not been used in previous work in the area. We show dis-
course features surprisingly do not substantially improve the final classification
performance.

2 Related Work

2.1 Diagnosing Dementia from Speech

There has been a recent interest in using lexical and acoustic features derived
from speech to diagnose ADOD. In 2013 Ahmed et al. [9] determined features
that could be used to identify dementia from speech, using data collected in
the Oxford Project to Investigate Memory and Ageing (OPTIMA) study. They
used a British cohort of 30 participants, 15 with Alzheimers disease at either mild
cognitive impairment or mild stages, and 15 whose age and education matched
healthy controls. Ahmed et al. found that language progressively deteriorates
as Alzheimer’s disease (AD) progresses and suggested using semantic, lexical
content, and syntactic complexity features to identify cases. Rentoumi et al. [10]
then used a Naive Bayes Gaussian Classifier with lexical and syntactic features

4 http://www.alz.org/greaterdallas/documents/AlzOtherDementias.pdf



to distinguish between AD with and without additional vascular pathology. They
achieved a classification accuracy of 75% on 36 transcripts from the OPTIMA
dataset.

In 2014 Fraser et al. [11] compared different feature sets that could be used
in discriminating between three different types of primary progressive aphasia,
a form of Frontotemporal Dementia, which is a rarer cause of dementia than
AD with a distinct disease course. They concluded that a smaller relevant sub-
set of features achieves better classification accuracy than using all features and
highlighted the importance of a feature selection step. They also showed how
psycholinguistic features, such as frequency and familiarity, were useful in de-
tecting aphasic dementia. In later work Fraser [12] achieved state-of-the-art of
81.92% in distinguishing individuals with AD from those without using logistic
regression. Fraser used DementiaBank, an American cohort of 204 persons with
dementia and 102 controls, and performed factor analysis on a set of 370 lexi-
cal and acoustic features, finding optimal performance when 35-50 features are
used[13].

Roark et al. [14] did the largest study to date classifying MCI from speech,
using transcripts and audio recordings of patients undergoing the Wechsler Log-
ical Memory I/II test. This test involves a patient twice retelling a short story,
once immediately after hearing it and again after a 30 minute delay. Roark ex-
tracted two broad set of features; “linguistic complexity” features which measure
the complexity of a narrative, and “speech duration” features including number
of pauses, pause length and pause-to-speech ratio. Using SVM’s, they achieved
a maximum AUC of 0.74 and concluded that NLP techniques could be used to
automatically derive measures to discriminate between healthy and MCI sub-
jects.

Our work differs from the previous work done in this area in a number of ways.
Unlike Roark, we are using MCI data collected from DementiaBank, described
in section 4.1, where patients undergo a picture description task rather than a
narrative retelling task. We are also using a larger feature set proposed by Fraser
et al., to which we are adding the “discourse features” described in sections 2.2
and 4.2. Most significantly, we are applying two domain adaptation algorithms
which aim to use data collected from AD patients to improve the diagnosis of
MCI. Our goal is not to improve upon the accuracy of previous work but to
demonstrate the viability of domain adaption in this setting.

2.2 Discourse Analysis

One measure of coherence which has been neglected in the aforementioned work
comes from discourse analysis. In a coherent passage, a reader can clearly discern
how one sentence relates to the next. A given sentence may explain or elaborate
upon a previous sentence (as this one is doing), or act as background for a future
sentence. Such relations can be formed on an intra-sentential level as well, with
elementary discourse units (EDU’s) being clause-like units of text which can be
related to one another by discourse relations. Discourse parsing is the task of
segmenting a piece of text into its EDU’s and then forming a discourse tree with



edges corresponding to discourse relations, as seen in Figure 1. Features related
to the discourse structure of a passage can then be extracted from the discourse
tree, as discussed in section 4.2.

Fig. 1. Discourse tree for two sentences. Each sentence contains three EDUs. EDUs
correspond to leaves of the tree and discourse relations correspond to edges. (Figure
adapted from [15])

Previous work has shown a disparity in the overall discourse ability of pa-
tients with ADOD compared to healthy controls [16–18]. Those with ADOD
show a greater impairment in global coherence, have more disruptive topic shift,
greater use of empty phrases, and produce fewer cohesive ties than controls.[19–
22]. Discourse parsing has been useful in determining overall coherence in other
domains such as essay scoring, and so we hypothesize that it will also be useful
for MCI detection [23].

2.3 Domain Adaptation

Domain adaptation is a general term for a variety of techniques that aim to
exploit resources in one domain (the source domain) in order to improve perfor-
mance on some task in a second domain (the target domain). This is typically
done when the target domain has little or no labelled data, while the source
domain has a relatively large amount of labelled data, as well as existing models
trained on that data. Typically the source data have been annotated for some
phenomenon of interest, and the target data relate to another phenomenon that
is highly similar in nature.

The issue of domain adaptation has received increasing attention in recent
years. In work by Chelba and Acero [24], the source model is used to derive
priors for the weights of the target model. They employ this technique with a
maximum entropy model and apply it to the task of automatic capitalization of
uniformly-cased data. They report that adaptation yields a relative improvement
of 25-30% in the target domain.

Blitzer et al. [25] introduced Structural Correspondence Learning (SCL),
in which relationships between features in the two domains are determined by
finding correlations with so-called pivot features, which are features exhibiting



similar behaviour in both domains. They used SCL to improve the performance
of a parser applied to Biomedical data, but trained on Wall Street Journal data.

Daume [26] introduced an approach wherein each feature is copied so that
there is a source version, a target version and a general version of the feature.
More recently, Sun [27] proposed CORAL, a method which aligns the second-
order statistics of the source and target domain. We have implemented these two
approaches, and describe them in more detail in Section 3.

3 Domain Adaptation

3.1 Baselines

We describe two domain adaptation algorithms below, and compare against four
baselines. Majority class predicts the majority class, target only trains the model
only using target data, source only trains a model only using source data but
evaluates on the target data. In the relabeled source model, we pool the target
data and source data in the training folds and relabel AD to MCI.

3.2 Frustratingly Simple

Daume III’s AUGMENT domain adaptation algorithm is simple (“frustratingly”
so) and has been shown to be effective on a wide range of datasets [26]. It aug-
ments the feature space by making a “source-only”, “target-only”, and “com-
mon” copy of each feature, as seen below.[

Xs

Xt

]
(n×d)

⇒
[
Xs 0 Xs

Xt Xt 0

]
(n×3d)

(1)

Here Xs ∈ Rns×d and Xt ∈ Rnt×d are matrices of source and target data,
where each of the n rows is an observation, each of the d column is a feature,
n = nt + ns and nt � ns. We create three copies of each column: a source-only
column with zeros in target rows, a target-only column with zeros in source rows,
and the original column with both target and source entries left untouched. This
augmented dataset is then fed to a standard learning algorithm.

The motivation for this transformation is intuitive. If a column contains a
feature (eg. mean word length) which correlates to a diagnosis in both the target
and source data (eg. MCI and Alzheimer’s), a learning algorithm will increase
the weight in the common column and reduce the weight on target-only and
source-only copies, thereby reducing their importance in the model. However,
if a feature correlates to a diagnosis only with MCI data, a learning algorithm
can increase the weight of the target-only column (which contains zeros for all
the source data) and reduce weight of the original and source-only columns,
thereby assuring the feature will be less relevant to the model when applied to
Alzheimer’s data. By expanding the feature space and padding with zeros, we
allow a model to learn whether to apply a given feature on zero, one, or both
datasets.



3.3 CORAL

CORAL (CORrelation ALignment) is another recently proposed “frustratingly
easy” domain adaptation algorithm which works by aligning the covariances of
the source and target features [27]. The algorithm first normalizes the source
data to zero mean and unit variance, and then a whitening transform5 is per-
formed on the source data to remove the correlation between the source features.
Finally, the source matrix is “recoloured” with the correlations from the target
data. These three steps are shown in Figure 2. A model is then trained on the
recoloured source data and used to classify the target data.

Fig. 2. The CORAL algorithm is shown in three steps. The target and source dataset
consist of three features; x, y, z. In a) the source data and target data are normalized
to unit variance and zero mean, but have difference covariances distributions. b) The
source data is whitened to remove the correlations between features. c) The source data
is recolored with the target domain’s correlations and the two datasets are aligned. A
classifier is then trained on the re-aligned source data. (Figure adapted from [27])

4 Experimental Design

An overview of our experimental design is as follows. We chose logistic regression
with l2 regularization as a model, which has been used successfully in previous
work on detecting Alzheimer’s [12]. We trained the model using a 10-fold cross
validation procedure. Within each fold, we first separated 10% of the data to
be used as a test set, assuring that if a patient has multiple interviews, those
interviews appeared either in the training set or the test set but not both. Then,
before training the model, we ran a feature selection step where we selected
for inclusion into the model only those features which have highest correlation
(positive or negative) with the labels in the training set. We were interested to

5 We used ZCA whitening which is discussed in greater detail here:
http://ufldl.stanford.edu/wiki/index.php/Whitening



see how model accuracy varied as a function of k, the number of features fed
to the model, so we trained a model for each value of k up to the total number
of features. This entire procedure was repeated for each of the 10 folds, and we
report the highest average F-Measure across all k.

With the AUGMENT, CORAL, and relabeled approaches, each fold of the
training set contains a combination of MCI+AD data and the test set contains
only MCI data. Our goal was to verify whether the accuracy achieved by using
these domain adaptation methods outperforms the accuracy achieved by using
MCI data alone. A secondary goal was to evaluate the effect of “discourse fea-
tures” (described below), which have not previously been applied in dementia
classification.

4.1 Corpora

We used the DementiaBank dataset, a publicly available dataset which con-
sists of transcripts and recordings of English-speaking participants describing
the “Cookie Theft Picture”, a component of the Boston Diagnostic Aphasia
Examination [28]. A patient is asked to describe a cartoon image and their an-
swer is manually transcribed, including false starts, pauses, and paraphasia, and
segmented into utterances, where an utterance is defined as a unit of speech
bounded by silence.

DementiaBank consists of 309 samples from 208 persons with dementia and
242 samples from 102 normal elderly controls (age 45-90). Of the 309 interviews
with dementia patients, 43 were classified as MCI and 256 as possible/probable
AD. The remaining interviews were not used in this study. We split the Demen-
tiaBank dataset into target (MCI) and source (AD) data, where the target data
contains 86 rows (43 MCI, 41 control) and the source data contains 458 rows
(236 probable AD, 21 possible AD, 201 control). Interviews from a single control
were contained in either the target or the source datasets, but not both.

4.2 Classification Features

In addition to the age of the patient, which is a known predictor of dementia [29],
We used a total of 353 lexical and acoustic features which can be divided into
nine groups. The first eight have been used in previous work [12].

– Parts-of-speech: We use the Stanford Tagger6 to capture the frequency
of various parts of speech tags (nouns, verbs, adjectives, adverbs, pronouns,
determiners, etc). Frequency counts are normalized by the number of words
in the transcript. We also count disfluencies (“um”, “er”, “ah”), not-in-
dictionary words of three or more letters, and word-type ratios (noun to
verb, pronoun to noun, etc).

– Context-free-grammar rules: Features which count how often a phrase
structure rule occurs in an utterance, including NP→VP PP, NP→DT NP,
etc. Parse trees come from the Stanford parser.

6 Available at: http://nlp.stanford.edu/software/tagger.shtml



– Syntactic Complexity: Features which measure the complexity of an ut-
terance through metrics such as the depth of the parse tree, mean length of
word, sentences, T-Units and clauses and clauses per sentence.

– Vocabulary Richness: We calculated various metrics which capture the
range of vocabulary in a text, include type-token ratio, Brunet’s index, Hon-
ore’s statistic, and the moving-average type-token ratio (MATTR) [30].

– Psycholinguistic: Psycholinguistic features are linguistic properties of words
that effect word processing and learnability [31]. We used five psycholin-
guisic features, Familiarity, Concreteness, Imagability, Age of acquisition
and SUBTL, which measures the frequency with which a word is used in
daily life [32].

– Content words: Croisile et al. [33] compiled a list of 23 items which can
be discerned in the Cookie Theft Picture. These “information units” can
be either actions or nouns and examples include “jar”, “cookie”, “boy”,
“kitchen”, “boy taking” and “woman drying”. For each information unit we
extracted two features; a binary feature indicating whether the subject has
mentioned the item (or one of its synonyms in WordNet), and a frequency
count of how many times an item has been mentioned.

– Repetitiveness: We vectorized the utterances using TF-IDF and measure
the cosine similarity between utterances. We then recorded the mean cosine
distance, the average cosine distance, and proportion of distances below three
thresholds (0, 0.3, 0.5).

– Acoustic: We calculated the mean, variance, skewness, and kurtosis of the
first 14 mel-frequency cepstral coefficients (MFCCs), representing spectral
information from the speech signal.

In addition to the features considered in previous work, we also perform a
discourse analysis on the transcripts as described in Section 2.2.

– Discourse: We use CODRA to segment the speech EDU’s and identify the
relations between them [15]. We count the number of occurrences of each
of the 17 discourse relations, the depth of the discourse tree, the average
number of EDU’s per utterance, the ratio of each discourse relation to the
total number of discourse relations, and the discourse relation type-to-token
ratio.

5 Results

We use the F-measure as our evaluation metric, which is the weighted harmonic
mean of precision and recall. The F-measures for all systems are shown in Figure
3. The main positive result is that domain adaptation does help with the task
of detecting MCI. The best overall approach is the AUGMENT adaptation sys-
tem without discourse features (F-Measure of 0.712, and 90% CI=0.633-0.791).
The confidence intervals with this AUGMENT system are also tighter than the
other approaches. Somewhat surprisingly, the source-only method (F-Measure of
0.681, and 90% CI=0.576-0.786) outperforms target-only (F-Measure of 0.640,



Fig. 3. Comparison of domain adaptation methods. We show the mean F-measure and
90% confidence intervals across a 10-fold CV. Only target data appears in the test fold.

and 90% CI=0.495-0.785), presumably because the source dataset is much larger.
The AUGMENT system also selects a smaller percentage of the total features
than the target-only, source-only and relabeled baselines. The effect of discourse
features is a mixed result. The best performing baseline model does include the
discourse features, but it is a very slight improvement. Furthermore, the AUG-
MENT, relabeled, and CORAL approaches all perform the same or slightly worse
when discourse features are added. We suspect that because the speech elicited
by the cookie theft test is both brief and highly specific, there will be few differ-
ences in the discourse structure between control and dementia groups. Discourse
analysis may be more useful in longer and less structured narratives, where there
is an opportunity for a speaker to use a larger set of discourse relations to connect
one statement to the next. The main negative result is the performance of the
CORAL domain adaptation method (F-Measure of 0.637, and 90% CI=0.487-
0.786), which is nearly identical to the target-only method, i.e. equivalent to not
doing domain adaptation at all. It has previously been found that CORAL does
not always work well with boolean features such as bag-of-words features [27].
Info-units, which have been shown in previous work to be strong predictors of
dementia, are largely boolean [12].

We also include a learning curve analysis showing AUGMENT’s F-Measure
score as a function of sample size, as seen in figure 4. We keep the ratio between
target and source data constant and run the analysis using 25%, 50%, 75% and
100% of the data. We ran 15 trials as described7 in section 4 on random subsets
of the data and plot the average and 90% CI across all trials. Figure 4 shows a
trend that increasing the size of the dataset improves the F-Measure and tightens
the confidence intervals as we approach 100% but then the curve levels off. This

7 With one small modification: We ran a 7-fold cross validation instead of 10-fold
because there was not enough target data in the 25% trial to divide into 10 folds.



Fig. 4. Learning curve showing F-Measure with AUGMENT as a function of training
data size. We keep the ratio of target and source data constant and average over 15
randomized trials.

suggests we may be nearing the limit of accuracy that can be achieved with a
source-to-target ratio of approx 5:1, but we will investigate this more fully in
future work.

6 Conclusion

Lack of data is a major obstacle facing researchers who wish to develop a tool
to diagnose mild cognitive impairment from speech. In this work we evaluated
two domain adaptation algorithms, AUGMENT and CORAL, which attempt
to improve classification accuracy by using data collected from patients with
Alzheimer’s. Our main positive result is that the AUGUMENT domain adapta-
tion algorithm outperformed all baseline algorithms and improved the F-measure
by more than 7% over models trained on MCI data alone.

A second objective of this paper was to evaluate the efficacy of discourse fea-
tures, which had not been used in previous work in this area. We speculated that
features extracted from a discourse tree of patient transcripts might capture the
loss of coherency which is characteristic of MCI, but unfortunately the discourse
features failed to consistently improve the results.

In future work, we will modify CORAL to improve its performance in this
setting. One possibility we will investigate is to align only the non-boolean fea-
tures of the source domain rather than the entire feature space. We will also
try merging both AUGMENT and CORAL into a single algorithm by adding a
“CORAL aligned” copy of the feature to the AUGMENT feature space. A par-
allel path of future work involves expanding our system so it can accommodate
data from multiple source domains simultaneously. In this way we will be able
to use speech samples collected from patients with Vascular Dementia, Demen-
tia with Lewy bodies, and other Non-Alzhiemers dementias. Finally, we wish to
expand our system to leverage data collected from diagnostics test other than



the Cookie-Theft test, such as the Narrative Retelling task from the Wechsler
Logical Memory I/II test.
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