The Impact of ASR on Abstractive vs. Extractive Meeting Summaries

Gabriel Murray, Giuseppe Carenini, Raymond Ng

Department of Computer Science, University of British Columbia

gabrielm@cs.ubc.ca, carenini@cs.ubc.ca, rng@cs.ubc.ca

Abstract

In this paper we describe a complete abstractive summa-
rizer for meeting conversations, and evaluate the usefulness
of the automatically generated abstracts in a browsing task.
We contrast these abstracts with extracts for use in a meeting
browser and investigate the effects of manual versus ASR tran-
scripts on both summary types.

Index Terms: summarization, automatic speech recognition,
abstraction, extraction, evaluation

1. Introduction

Sentence extraction is the most common solution to the task
of summarizing spoken and written data, with a summary be-
ing comprised of informative sentences from the source docu-
ment(s). This approach is popular because summarization can
be treated as a binary classification task, and there is no need
for a natural language generation (NLG) component. Extrin-
sic evaluations have shown that extracts can be useful tools for
browsing documents, but suffer in terms of coherence and user
satisfaction ratings [1, 2, 3].

In this paper we describe a complete and fully automatic
system for generating abstract summaries of meeting conversa-
tions. Our abstractor maps input sentences to a meeting ontol-
ogy, generates messages that abstract over multiple sentences,
selects the most informative messages, and ultimately generates
new text to describe these relevant messages at a high level. We
conduct a user study where participants must browse a meet-
ing conversation within a very constrained timeframe, having
a summary at their disposal. We compare our automatic ab-
stracts with human abstracts and extracts on manual transcripts
and find that our abstract summaries significantly outperform
extracts in terms of coherence and usability according to human
ratings. With ASR transcripts this finding is even stronger.

2. Related Work

Meeting extraction has received increased attention in recent
years [4, 5]. However, very little research has been done on
abstractive meeting summarization. Kleinbauer et al. [6] carry
out topic-based meeting abstraction. Our systems differ in two
major respects: their summarization process uses human gold-
standard annotations of topic segments, topic labels and content
items from the ontology, while our summarizer is fully auto-
matic; secondly, the ontology they used is specific not just to
meetings but to the AMI scenario meetings [7], while our on-
tology applies to conversations in general.

In this work we conduct a user study where participants use
summaries to browse meeting transcripts. Some previous work
has compared extracts and abstracts for the task of a decision
audit [3], finding that human abstracts are a challenging gold-
standard in terms of enabling participants to work quickly and

correctly identify the relevant information. For that task, auto-
matic extracts and the semi-automatic abstracts of Kleinbauer et
al. [6] were found to be competitive with one another in terms
of user satisfaction and resultant task scores. That study also
showed that working with ASR transcripts led to much lower
user satisfaction ratings. However, the only ASR condition was
an extractive summary condition. In this work we compare ab-
stracts and extracts on ASR transcripts.

3. Conversation Abstraction

Our system follows the interpretation-transformation-
generation pipeline laid out by Sparck-Jones [8]. Its
components are described in more detail in [9].

3.1. Interpretation - Ontology Mapping

Source document interpretation in our system relies on a gen-
eral conversation ontology written in OWL/RDF and containing
upper-level classes such as Participant, Entity, Utterance, and
DialogueAct. Object properties connect instances of ontology
classes; for example, the following entry in the ontology states
that the object property hasSpeaker has an instance of Utterance
as its domain and an instance of Participant as its range.

<owl:0ObjectProperty rdf:about="#hasSpeaker">
<rdfs:range rdf:resource="#Participant"/>
<rdfs:domain rdf:resource="#Utterance"/>
</owl:ObjectProperty>

The DialogueAct class has subclasses corresponding to a
variety of sentence-level phenomena: decisions, actions, prob-
lems, positive-subjective sentences, negative-subjective sen-
tences and general extractive sentences (important sentences
that may not match the other categories). Utterance instances
are connected to DialogueAct subclasses through an object
property hasDAType. A single utterance may correspond to
more than one DialogueAct; for example, it may represent both
a positive-subjective sentence and a decision.

We map sentences to our ontology classes by building nu-
merous supervised classifiers trained on labeled decision sen-
tences, action sentences, etc. A general extractive classifier is
also trained on sentences simply labeled as important. We give
a specific example of the ontology mapping using the follow-
ing excerpt from the AMI corpus, with entities italicized and
resulting sentence classifications shown in bold:

e A: And you two are going to work together on a proto-
type using modelling clay. [action]

o A: You'll get specific instructions from your personal

coach. [action]

C: Cool. [positive-subjective]

e A: Um did we decide on a chip? [decision]

o A: Let’s go with a simple chip. [decision, positive-
subjective]

Our current definition of Entity instances is simple. The
entities in a conversation are noun phrases with mid-range doc-
ument frequency. The ontology is populated by adding all of the
sentence entities as instances of the Entity class, all of the par-
ticipants as instances of the Participant class (or its subclasses
such as ProjectManager), and all of the utterances as instances
of Utterance with their associated hasDAType properties indi-
cating the utterance-level phenomena of interest.

The interpretation component as just described relies on su-
pervised classifiers for the detection of items such as decisions,
actions, and problems. This component uses general features
that are applicable to any conversation domain. These can be
classified as lexical features and conversation structure features,
and are described in more detail in [10]. There are 218,957 fea-
tures total.

3.2. Message Generation

Rather than merely classifying individual sentences as deci-
sions, action items, and so on, we also aim to detect larger pat-
terns — or messages — within the meeting. For example, a given
participant may repeatedly make positive comments about an
entity throughout the meeting, or may give contrasting opinions
of an entity. In order to determine which messages are essential
for summarizing meetings, three human judges conducted a de-
tailed analysis of four development set meetings and identified
the following messages:

e OpeningMessage and ClosingMessage: Briefly de-
scribes opening/closing of the meeting

e RepeatedPositiveMessage and RepeatedNegativeMes-
sage: Describes a participant making positive/negative
statements about a given entity

o ActionltemsMessage: Indicates that a participant has ac-
tion items relating to some entity

o DecisionMessage: Indicates that a participant was in-
volved in a decision-making process regarding some en-
tity

e ProblemMessage: Indicates that a participant repeatedly
discussed problems or issues about some entity

o GeneralDiscussionMessage: Indicates that a participant
repeatedly discussed a given entity

Message generation takes as input the ontology mapping
described in the previous section, and outputs a set of messages
for a particular meeting. This is done by identifying pairs of
Participants and Entities that repeatedly co-occur with the vari-
ous sentence-level predictions. For example, if the project man-
ager repeatedly discusses the interface using utterances that are
classified as positive-subjective, a RepeatedPositiveMessage is
generated for that Participant-Entity pair. Messages types are
defined within the OWL ontology, and the ontology is popu-
lated with message instances for each meeting.

3.3. Transformation - ILP Content Selection

Having detected all the messages for a given meeting conversa-
tion, we now turn to the task of transforming the source repre-
sentation to a summary representation, which involves identify-
ing the most informative messages for which we will generate
text. We choose an integer linear programming (ILP) approach
to message selection. Xie et al. [11] used ILP to create an
extractive summary by maximizing a global objective function
combining sentence and entity weights. In our method we are
selecting messages based on optimizing an objective function
combining message and sentence weights:

mazximize (1 — \) *ZUHSi"‘A*Zu]'m]' (1)
i J

subject to Zl,-s,- <L 2)
i

where wj; is the score for sentence ¢, u; is the score for
message j, s; is a binary variable indicating whether sentence
1 is selected, m; is a binary variable indicating whether sen-
tence j is selected, /; is the length of sentence 7 and L is the
desired summary length. The X term is used to balance sen-
tence and message weights. Our sentence weight w; is the sum
of all the posterior probabilities for sentence ¢ derived from the
various sentence-level classifiers. In other words, sentences are
weighted highly if they correspond to multiple object properties
in the ontology. To continue the example from Section 3.1, the
sentence Let’s go with the simple chip will be highly weighted
because it represents both a decision and a positive-subjective
opinion. The message score u; is the number of sentences con-
tained by the message j. For instance, the DecisionMessage
at the end of Section 3.2 contains two sentences. We can cre-
ate a higher level of abstraction in our summaries if we select
messages which contain numerous utterances.

There are two further constraints stating that a sentence can
only be selected if it occurs in a message that is selected, and
that a message can only be selected if all of its sentences have
also been selected [11].

For these initial experiments, A is set to 0.5. The summary
length L is set to 15% of the conversation word count. Note that
this is a constraint on the length of the selected utterances; we
additionally place a length constraint on the generated summary
described in the following section.

3.4. Summary Generation

The generation component of our system follows the standard
pipeline architecture, comprised of a text planner, a micro-
planner and a realizer [12].

Text Planning The input to the document planner is an on-
tology which contains the selected messages from the content
selection stage. We take a top-down, schema-based approach
to document planning [12]. This method is effective for sum-
maries with a canonical structure, as is the case with meetings.
There are three high-level schemas invoked in order: opening
messages, body messages, and closing messages. For the body
of the summary, messages are retrieved from the ontology us-
ing SPARQL, an SQL-style query language for ontologies, and
are clustered according to entities. Entities are temporally or-
dered according to their average timestamp in the meeting. In
the overall document plan tree structure, the body plan is com-
prised of document sub-plans for each entity, and the document
sub-plan for each entity is comprised of document sub-plans for
each message type. The output of the document planner is a tree
structure with messages as its leaves and document plans for its
internal nodes.

Microplanning - Aggregation and Referring Expres-
sions The microplanner takes the document plan as input and
performs two operations: aggregation and generation of refer-
ring expressions.There are several possibilities for aggregation
in this domain, such as aggregating over participants, entities
and message types. The analysis of our four development set
meetings revealed that aggregation over meeting participants is
quite common in human abstracts, so our system supports such

aggregation. This involves combining messages that differ in
participants but share a common entity and message type.

To reduce redundancy in our generated abstracts, we gen-
erate alternative referring expressions when a participant or an
entity is mentioned multiple times in sequence. For participants,
this means the generation of a personal pronoun. For entities,
rather than referring repeatedly to, e.g., the remote control, we
generate expressions such as that issue or this matter.

Realization The text realizer takes the output of the mi-
croplanner and generates a textual summary of a meeting. This
is accomplished by first associating elements of the ontology
with linguistic annotations. For example, participants are asso-
ciated with a noun phrase denoting their role, such as the project
manager. Since entities were defined simply as noun phrases
with mid-frequency IDF scores, an entity instance is associated
with that noun phrase. Messages themselves are associated with
verbs, subject templates and object templates. For example, in-
stances of DecisionMessage are associated with the verb make,
have a subject template set to the noun phrase of the message
source, and have an object template [NP a decision PP [con-
cerning _______]] where the object of the prepositional phrase
is the noun phrase associated with the message target.

As a concrete example, consider a decision message:

<DecisionMessage rdf:about="#dec9">

<rdf:type rdf:resource="&owl; Thing"/>
<hasVerb>make</hasVerb>

<hasCompl>a decision</hasCompl>

<messageSource rdf:resource="#MarketingExpert"/>
<messageSource rdf:resource="#ProjectManager"/>
<messageTarget rdf:resource="#television"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.55"/>
<containsUtterance rdf:resource="#ES2014a.D.dact.63"/>
</DecisionMessage>

There are two message sources, ProjectManager and
MarketingExpert, and one message target, television.
The subjects of the message are set to be the noun phrases asso-
ciated with the marketing expert and the project manager, while
the object template is filled with the noun phrase the television.
This message is realized as The project manager and the mar-
keting expert made a decision about the television.

For our realizer we use simpleNLG'. We traverse the doc-
ument plan output by the microplanner and generate a sentence
for each message leaf.

4. User Study

We carried out a formative user study of our approach. We
asked participants to review meeting conversations within a
short timeframe, having a summary at their disposal. We com-
pared human abstracts and extracts with our automatically gen-
erated abstracts. The interpretation component and a prelim-
inary version of the transformation component have already
been tested in previous work [10]. The sentence-level classi-
fiers were found to perform well according to the area under the
receiver operator characteristic (AUROC) metric, with scores
ranging from 0.76 for subjective sentences to 0.92 for action
item sentences. In the following, we focus on the formative
evaluation of the complete system.

4.1. Experimental Setup

For our meeting summarization experiments, we use the sce-
nario portion of the AMI corpus [7], where groups of four par-
ticipants take part in a series of four meetings and play roles

Uhttp://www.csd.abdn.ac.uk/ ereiter/simplenlg/

within a fictitious company. We selected five AMI meetings for
this user study, with each stage of the four-stage AMI scenario
represented. The meetings average approximately 500 sen-
tences each. We included the following five types of summaries
for each meeting: (EHM) extract/human-generated/manual
transcripts, (EHA) extract/human-generated/ASR, (AHM)
abstract/human-generated/manual transcripts, and the sum-
maries output by our abstractor, (AAM) abstract/auto-
generated/manual transcripts and (AAA), abstract/auto-
generated/ASR. Each summary contains links to the sentences
in the meeting transcript. For extracts, this is a one-to-one map-
ping. For the abstract conditions, this can be a many-to-many
mapping between abstract sentences and transcript sentences.
Participants were given instructions to browse each meeting
in order to understand the gist of the meeting, taking no longer
than 15 minutes per meeting. They were asked to consider the
scenario in which they were a company employee who wanted
to quickly review a previous meeting by using a browsing in-
terface designed for this task. The time constraint meant that
it was not feasible to simply read the entire transcript straight
through. Participants were free to adopt whatever browsing
strategy suited them, including skimming the transcript and us-
ing the summary as they saw fit. Upon finishing their review
of each meeting, participants were asked to rate their level of
agreement or disagreement on several Likert-style statements
relating to the difficulty of the task and the usefulness of the
summary. There were six statements to be evaluated on a 1-5
scale, with 1 indicating strong disagreement and 5 indicating
strong agreement:
Q1: I understood the overall content of the discussion.
Q2: It required effort to review the meeting in the allotted time.
Q3: The summary was coherent and readable.
Q4: The information in the summary was relevant.

Q5: The summary was useful for navigating the discussion.
Q6: The summary was missing relevant information.

We recruited 19 participants in total, with each receiving
financial reimbursement for their participation. Each partici-
pant saw one summary per meeting and rated every summary
condition during the experiment. We varied the order of the
meetings and summary conditions. With 19 subjects, five sum-
mary conditions and six Likert statements, we collected a total
of 570 user judgments. To ensure fair comparison between the
three summary types, we limit summary length to be equal to
the length of the human abstract for each meeting. This ranges
from approximately 190 to 350 words per meeting summary.

4.2. Results

Participants took approximately 12 minutes on average to re-
view each meeting, slightly shorter than the maximum allotted
fifteen minutes.

Figure 1 shows the average ratings for each Likert state-
ment for the manual transcript conditions, while Figure 2 shows
the ratings for ASR. For Q1, which concerns general compre-
hension of the meeting discussion, condition AHM (human ab-
stracts) is rated significantly higher than EHM (human extracts)
and AAM (automatic abstracts) (p=0.0016 and p=0.0119 ac-
cording to t-test, respectively). However, for the other statement
that addresses the overall task, Q2, AAM is rated best overall.
When using ASR, we can see that users have less understand-
ing of the meeting and more effort is required. Extracts of ASR
transcripts require the most effort of any condition.

Q3 concerns coherence and readability. Condition AHM is
significantly better than both EHM and AAM (p<0.0001 and
p=0.0321). Our condition AAM is also significantly better than

Human Abstracts X3
~77] Auto Abstracts E===
Human Extracts s

3
A
A

o
5
ook

<

fok

x|

3

R
2%
B
%7
e

7
oot

226

35

3

R
RIS

K%
BB

REZES

KRR

2

K

Average User Ratings

R

RRIX

KK

ZeZene
RERERRS

K
i%6%%%

Figure 1: User Ratings - Manual (** = lower score is better)

the extractive condition EHM (p=0.0196). These ratings con-
firm that coherence and readability can be major weaknesses of
extracts. The difference between extracts and our abstracts is
even starker with ASR, where our system is rated nearly twice
as highly (sig. at p=0.001).

Q4 concerns the perceived relevance of the summary. Con-
dition AHM is again significantly better than EHM and AHM
(both p<0.0001). AAM is rated substantially higher than EHM
on summary relevance, but not at a significant level. Neither
is there a significant difference between ASR conditions AAA
and EHA.

Q5 is a key question because it directly addresses the issue
of summary usability for such a task. Condition AHM is sig-
nificantly better than EHM and AAM (both p<0.0001), but we
also find that AAM is significantly better than EHM (p=0.0476).
The gap between abstracts and extracts regarding summary use-
fulness is even wider with ASR (p=0.012). For quickly review-
ing a meeting conversation, abstracts are much more useful than
extracts.

Q6 indicates whether the summaries were missing any rel-
evant information. Condition AHM is significantly better than
EHM and AAM (p<0.0001 and p=0.0179), while AAM is bet-
ter than EHM with marginal significance (p=0.0778). This in-
dicates that our automatic abstracts were better at containing
all the relevant information than were human-selected extracts.
There is no significant difference between AAA and EHA. With
ASR, users are more likely to feel that information is missing
from both summary types.

In both ASR conditions, users made comments about the
transcript being difficult to follow. Of Condition EHA, one
wrote that the summary made only slightly less sense than
the almost completely unreadable discussion and another com-
plained that the text from the meeting seemed to be also quite
incoherent which [made] it even more difficult to comprehend
what had transpired in the absence of an adequate summary. Of
Condition AAA, a user stated that I have no idea what went on
in the meeting...I don’t think this one’s the summary program’s
fault, the meeting just didn’t make sense. The most interest-
ing theme from the qualitative feedback is that many users do
not consider extracts to constitute summaries, with numerous
comments along the lines of it was not even a summary and the
summary again just took snippets of conversation out of context
and was therefore useless.

5. Conclusions

We have presented a complete automatic abstractive summa-
rization system for meeting conversations. A formative evalu-

Human Extracts s
Auto Abstracts =2

Average User Ratings

Figure 2: User Ratings - ASR (** = lower score is better)

ation demonstrated that users prefer abstract-style summaries,
both human-generated and auto-generated, over extracts for
browsing meeting transcripts. Our automatic abstracts are rated
significantly better than human-generated extracts on coherence
and usability criteria, and those differences widen when applied
to ASR transcripts. We believe these are compelling results
for motivating further research on automatic abstraction tech-
niques.

6. References

[1]1 L. He, E. Sanocki, A. Gupta, and J. Grudin, “Auto-summarization
of audio-video presentations,” in Proc. of ACM MULTIMEDIA
’99, Orlando, FL, USA, 1999, pp. 489—498.

[2] K. McKeown, J. Hirschberg, M. Galley, and S. Maskey, “From
text to speech summarization,” in Proc. of ICASSP 2005,
Philadelphia, USA, 2005, pp. 997-1000.

[3] G. Murray, T. Kleinbauer, P. Poller, S. Renals, T. Becker, and
J. Kilgour, “Extrinsic summarization evaluation: A decision au-
dit task,” ACM Transactions on SLP, vol. 6, no. 2, 2009.

[4] K. Zechner, “Automatic summarization of open-domain multi-
party dialogues in diverse genres,” Computational Linguistics,
vol. 28, no. 4, pp. 447485, 2002.

[5] M. Galley, “A skip-chain conditional random field for ranking
meeting utterances by importance,” in Proc. of EMNLP 2006, Syd-
ney, Australia, 2006, pp. 364-372.

[6] T. Kleinbauer, S. Becker, and T. Becker, “Combining multiple in-
formation layers for the automatic generation of indicative meet-
ing abstracts,” in Proc. of ENLG 2007, Dagstuhl, Germany, 2007.

[7]1 J. Carletta, S. Ashby, S. Bourban, M. Flynn, M. Guillemot,
T. Hain, J. Kadlec, V. Karaiskos, W. Kraaij, M. Kronenthal,
G. Lathoud, M. Lincoln, A. Lisowska, I. McCowan, W. Post,
D. Reidsma, and P. Wellner, “The AMI meeting corpus: A pre-
announcement,” in Proc. of MLMI 2005, Edinburgh, UK, 2005,
pp. 28-39.

[8] K. S. Jones, “Automatic summarizing: Factors and directions,” in
Advances in Automatic Text Summarization, 1. Mani and M. May-
bury, Eds. MITP, 1999, pp. 1-12.

[9]1 G. Murray, G. Carenini, and R. Ng, “Generating and validating
abstracts of meeting conversations: a user study,” in Proc. of INLG
2010, Dublin, Ireland, 2010.

[10] ——, “Interpretation and transformation for abstracting conversa-
tions,” in Proc. of NAACL 2010, Los Angeles, USA, 2010.

[11] S. Xie, B. Favre, D. Hakkani-Tiir, and Y. Liu, “Leveraging sen-
tence weights in a concept-based optimization framework for ex-

tractive meeting summarization,” in Proc. of Interspeech 2009,
Brighton, England, 2009.

[12] E. Reiter and R. Dale, Building Natural Language Generation
Systems. Cambridge, GB: Cambridge University Press, 2000.

