Unless stated otherwise, the minimum grade acceptable in all course prerequisites is a C-.

English language proficiency requirements Students registering in post-secondary level courses (numbered 100 to 499) will be required to meet the English language entrance proficiency requirements. Students in ELS or the University Foundations programs can register in those courses identified in the University Foundations program with lower levels of language proficiency. |

4 credits

Prerequisite(s): One of the following: MATH 084, MATH 085, Principles of Mathematics 11 or 12, Applications
of Mathematics 11 or 12, Foundations of Mathematics 11 or 12, Pre-calculus 11 or 12, or Apprenticeship and
Workplace Math 11 or 12.

Note: Students with other Mathematics 11 or 12 courses, or who are currently
enrolled in a Mathematics 11 course, may contact the instructor to request permission to register.

This is a university preparatory course equivalent to the Physics 11 course taught in B.C. high schools. Successful
completion of this course provides the prerequisites to enroll in PHYS 101 at UFV. No prior knowledge of
physics is needed. This course covers the main concepts in mechanics and optics.

Note: Students
with credit for PHYS 083 cannot take PHYS 100 for further credit.

4 credits

Prerequisite(s): One of (Applications of Mathematics 11, Principles of Mathematics 11, Pre-Calculus 11, Foundations of Mathematics 11, MATH 084, or MATH 085) and one of (Physics 11, PHYS 083, or PHYS 100).

This is a university preparatory course equivalent to the Physics 12 course taught in B.C.’s high schools. Successful completion of this course gives the prerequisites to enrol in PHYS 111 at UFV. The concepts covered are mechanics, electricity, and magnetism. In mechanics the topics are kinematics with emphasis on 2D motion, vectors, Newton’s laws, Newton’s gravitational law, projectile motion, centripetal force, conservation of energy, work, conservation of momentum. In electricity and magnetism the topics are Coulomb’s law, electric fields, potential and potential difference, Ohm’s law, circuits, resistances in series and parallel, Kirchhoff’s laws, magnetic fields and their sources, and forces produced by magnetic fields. A large number of experiments will be assigned to provide correlation between the classroom theory and practical applications.

4 credits

Prerequisite(s): Any BC Mathematics 12, MATH 094, or COMP 138.

Corequisite(s): MATH 095 is suggested.

Kinematics and dynamics (Newton’s laws), conservation of energy and momentum, wave motion, geometric optics,
introductory special relativity, and nuclear reactions.

Note: PHYS 100 has been designed for students
who have not taken Physics 11 but who have a strong background in mathematics. PHYS 100 is intended as a
superior substitute for Physics 11 with regards to meeting prerequisites and satisfying program requirements.
PHYS 100 satisfies the lab science requirement for the Bachelor of Arts.

5 credits

Prerequisite(s): One of (Principles of Mathematics 12, MATH 094/095, or Pre-Calculus 12) and one of (Physics 11, PHYS 083, or PHYS 100); or Physics 12; or PHYS 093. Because of an overlap in course material, students taking MATH 111 should take PHYS 111 instead.

This is an introductory non-calculus Physics course. The course covers Newtonian mechanics; motion, momentum,
and energy of particles, rigid rotating bodies, and fluids. The object of the course is to develop both an
understanding of physical laws and logical problem-solving skills. The course has lectures, tutorials, and
laboratory experiments.

Note: PHYS 111 is the entry course for upper-level physics. Students with PHYS
111 cannot take PHYS 101 for further credit.

5 credits

Prerequisite(s): One of (Principles of Mathematics 12, Pre-Calculus 12, MATH 095, or MATH 110) and one of (Physics 11, PHYS 083, or PHYS 100); or one of Physics 12, PHYS 093, PHYS 101, or PHYS 111.

Though suitable for all science students, this course is of particular interest to students taking biology
and chemistry. Topics include thermodynamics, waves, geometric and wave optics, and electric circuits. This
course can be taken by students who only need one non-calculus physics course, and already have Grade 11
physics, or can be the second half of a full-year non-calculus program. The course can also be used in combination
with Physics 111 as an entry into a UFV physics major, although Physics 111 and 112 is the preferred route.

Note: Both PHYS 101 and PHYS 105 are often required for transfer.

5 credits

Prerequisite(s): One of (Principles of Mathematics 12, Pre-calculus 12, MATH 095, or MATH 110) and one of (Physics
11, PHYS 083, or PHYS 100); or Physics 12; or PHYS 093.

Note: Students with B.C. Calculus 12, IB Math
12, or AP Calculus 12 A or B should contact the instructor or department head for permission to register.

Pre- or corequisite(s): MATH 111 highly recommended.

Note: Math 111 with a C or better and MATH 112 are
required pre or corequisites for PHYS 112.

This course is intended for students who are planning to study engineering science or life sciences. Topics
covered include vectors, kinematics, dynamics, work and energy, collisions, rotational kinematics, rotational
dynamics, simple harmonic motion, and gravitation. The object is to understand the fundamental laws of mechanics,
to learn how to apply the theory to solve related problems, and to develop a feeling for the order of magnitude
of physical quantities in real experiments.

Note: Students cannot take PHYS 100 or PHYS 101 for further
credit.

5 credits

Prerequisite(s): MATH 111 and one of (PHYS 111, PHYS 105 with a B, or PHYS 101 with a B+).

Pre- or corequisite(s): One of MATH 112, MATH 118, or PHYS 111 with an A.

This course follows PHYS 111 and is designed for students who are planning to continue their studies in physics or any of the other sciences. Topics include electric fields, Gauss's law, electric potential, circuits, Kirchhoff's laws, magnetic fields, magnetic induction, and finally, a study of Maxwell's equations. The laboratory portion of the course uses experiments to reinforce the theory covered in class.

4 credits

Prerequisite(s): (PHYS 111 and PHYS 112) or (PHYS 101 and PHYS 105 with a B+ or higher in each)

Pre- or corequisite(s): MATH 211

This course extends the topics covered in Physics 111. Topics covered include kinematics, motion in polar coordinates, Newton's laws, momentum, work, some mathematical aspects of physics and vector analysis (gradient, divergence, curl, Stokes' theorem and Gauss's law), angular momentum, forced and damped harmonic motion, central forces and Lagrangian mechanics. The laboratory portion of the course includes experiments designed to supplement the theory covered in class.

3 credits

Prerequisite(s): PHYS 221

Corequisite(s): PHYS 381 recommended

This course builds upon the foundations of mechanics presented in PHYS 221 by extending oscillatory motion from single point masses to continuous bodies. In particular, the course will introduce students to both longitudinal and transverse waves via the wave equation, and describe how energy can be transported through distortions of a continuous medium (like sound waves in air). Properties specific to waves like superposition and interference will also be investigated, and will see application in effects like wave diffraction. As light can be considered to be an electromagnetic wave, students will be able to apply these concepts to the study of Optics (Huygens Principle), and look at simple optical processes like reflection, and refraction from mirrors and lenses. Lastly, the concept of matter waves and quantum theory using the de Broglie hypothesis will be introduced, which will set the stage for the study of Quantum Mechanics in PHYS 351. A small number of experiments will be performed in order to quantify many of the concepts studied.

3 credits

Prerequisite(s): PHYS 112

Pre- or corequisite(s): MATH 211

Pressure, temperature, kinetic theory, and the Maxwell velocity distribution; heat, work, and the first law; heat capacities, equations of state, and exact and inexact differentials; isothermal, isobaric, isochoric and adiabatic processes, heat engines, phase diagrams, and thermodynamic cycles; thermal expansion, conductive, convective and radiative heat losses, entropy, and the second law.

2 credits

Prerequisite(s): PHYS 112

This course is an introduction to the techniques involved in designing a physics experiment. There is an emphasis on electric circuits and electrical measurements, but practical methodologies useful in all experimental physics courses are developed.

3 credits

Prerequisite(s): PHYS 112

This is an introductory course in Einstein's theory of Special Relativity and Quantum Physics. The course will use qualitative discussions of the two theories along with the development of the more formal mathematics needed to acquire a deeper understanding of the theories. The topics in the Theory of Special Relativity include: problems which occurred in the "old physics", Lorentz transformations, and geometrical interpretations of the Lorentz transformations, dynamics, conservation laws, and the so-called paradoxes of relativity. The topics in Quantum physics include: the difficulties arising from the "old physics", short discussion of the first quantum theories (old quantum mechanics), Schrodinger's wave equation, simple time independent solutions for Schrodinger's equation, and the applications of quantum physics to atoms and nuclei.

1 credit

Prerequisite(s): One of the following: BIO 111, PHYS 105, or PHYS 112.

Overview of the field of Medical Physics, describing the different types of diseases, treatments, and research
specialties that Medical Physicists are involved with, job prospects and salary, and the training required
for a starting position and for advancement.

Note: Field trips will be required.

Note: Students
with credit for PHYS 175 cannot take this course for further credit.

3 credits

Prerequisite(s): PHYS 231) and (one of PHYS 221 or PHYS 381).

Basic statistics and statistical distributions (Binomial, Gaussian, and Poisson); statistical description of particle interactions and equilibrium, phase space, and the number of microstates; micro canonical, canonical, and grand canonical distributions; partition functions, entropy, and the Boltzmann factor; quantum statistics, Fermi-Dirac, and Bose-Einstein systems.

3 credits

Prerequisite(s): PHYS 112 and PHYS 381

Pre- or corequisite(s): MATH 312 recommended

This course elaborates upon and extends many of the topics covered in PHYS 112. It begins with an introduction
to vectors and vector calculus. These ideas are then applied to a study of electrostatics and magnetostatics,
both in vacuum and in materials. Also, time-dependent electric and magnetic fields are considered. Faraday's
law and the displacement current are introduced and serve to finalize Maxwell's equations.

Note: Students
with credit for PHYS 222 cannot take this course for further credit.

3 credits

Prerequisite(s): PHYS 221.

Pre- or corequisite(s): PHYS 381.

Motion in non-inertial reference frames, calculus of variations and Lagrange's equations with and without constraints, Hamilton's equations, rotational moment of inertia, motion of rigid bodies in three dimensions, the symmetric top.

3 credits

Prerequisite(s): PHYS 221.

Pre- or corequisite(s): PHYS 381.

Fluid mechanics is an important and yet often under-appreciated and neglected aspect of physics; yet an understanding of how fluids behave is important in a diversity of subjects from Astrophysics (stars and planetary bodies) to Microbiology (fluid flow into and out of cells). This course will introduce students to the subject of fluid mechanics from the basic principles of Archimedes and Bernoulli, to the more complex aspects of vortices and streamlines. An emphasis will be placed on the vector description of fluid behaviour, which will necessitate a brief introduction to Cartesian tensors.

3 credits

Prerequisite(s): PHYS 225.

Pre- or corequisite(s): PHYS 381.

Quantum theory and the Planck-deBroglie hypotheses, wave-particle duality, uncertainty principle; operators and the Schrödinger equation, statistical interpretation of the wavefunction, solutions for simple one dimensional potentials; position, momentum and energy representations, Dirac Bra-Ket notation, Hilbert space; Coulomb potential and the hydrogen atom, angular momentum and spin.

3 credits

Prerequisite(s): PHYS 221 and PHYS 381

Originally devised by Einstein as a way to explain the electrodynamics of moving bodies, Special Relativity has now become an integral part of our understanding of fundamental physics at all levels. Armed with only the concept of invariance of physical laws under certain transformations, students will discover that length and time are no longer absolutes, but depend on the relative velocity of observers. The three dimensions of space and one dimension of time now become part of a larger structure, which is four-dimensional space-time. In order to understand how objects behave in space-time, students will be introduced to the mathematics of tensors, where they will find the more familiar vectors and scalars as special cases of these mathematical objects. The techniques learned can then be extended to understand how classical fields like electromagnetism arise, and give further insight as to the connection between electric and magnetic fields.

4 credits

Prerequisite(s): PHYS 275, (one of the following: STAT 104, STAT 106, MATH 270/STAT 270, or PHYS 232), and instructor's permission. Note: Both PHYS 225 and BIO 202 are recommended prerequisite courses.

An introduction to the essentials of radiation protection in different environments (especially medical), as
well as the fundamentals of radiobiology, i.e. the study of the behavior of cells when exposed to different
forms and levels of radiation.

Note: This course will be held off campus at the BC Cancer Agency
(Abbotsford Hospital).

3 credits

Prerequisite(s): MATH 211 and (one of the following: PHYS 221 or MATH 255) and (one of the following: PHYS 112 or any other MATH course 200-level or above).

Partial and ordinary differential equations. Fourier series/transforms. Legendre polynomials. Laplace transforms.
Applications to heat flow and waves. Laplace's equation in 1D, 2D, 3D using Cartesian, polar, and spherical
co-ordinates. Special functions including Dirac Delta, Heaviside Theta, Si, Ci, Ei, Erf, Gamma.

Note: This course is offered as PHYS 381, MATH 381, and ENGR 257. Students may take only one of these for
credit.

3 credits

Prerequisite(s): PHYS 221 or PHYS 232

Corequisite(s): One of PHYS 302, 321, 322, 351 or 410 is strongly recommended

This eclectic laboratory course is designed to give students a chance to perform many traditional and modern experiments. The students will be required to do a selection of experiments from a list spanning the many disciplines of physics: dynamics, optics, solid state physics, fluid dynamics, thermodynamics, electricity, magnetism, electronics, nuclear physics, etc. Students will also have the option of selecting a group of experiments concentrating on one branch of physics (e.g. advanced mechanics, optics, etc.)

3 credits

Prerequisite(s): PHYS 382

Corequisite(s): One of PHYS 302, 321, 322, 351 or 410 is recommended

This laboratory course is a continuation of PHYS 382. Students must complete a different set of experiments than the ones done in PHYS 382 and must present a lab book at the beginning of the course to show the experiments previously completed.

3 credits

Pre- or corequisite(s): PHYS 221

This is the first of two courses designed to illustrate how computer algebra systems (CAS) can be used in physics. The emphasis is on using computer algebra methods to form, manipulate, simplify, and plot equations along with its ability to interactively answer "what if" questions. No prior knowledge of any CAS software is assumed or needed.

3 credits

Prerequisite(s): PHYS 225 and PHYS 312.

Pre- or corequisite(s): PHYS 351 recommended.

Overview of geometric and physical optics, Fermat’s principle of least time, index of refraction, dispersion,
Snell’s law, and the reflection and refraction of light from arbitrary shaped surfaces; lenses and mirrors,
magnifiers, microscopes and telescopes, the human eye and corrective lenses; Maxwell’s equations and the
wave nature of light, interference and diffraction, Fourier optics, polarization, and the Jones calculus.

Note: Students with credit for PHYS 302 cannot take this course for further credit.

3 credits

Prerequisite(s): 6 credits of PHYS 300 or above, and permission of the instructor

This class allows for students to study a topic in physics which is not included within the current course offerings of the department. Different topics will be identified by adding a letter to the course number, e.g. 408C, 408D. Interested students should contact the head of the Department of Physics for more information.

3 credits

Prerequisite(s): Any 300 - level Physics course

Corequisite(s): PHYS 382 or 383 (Historical group of experiments) strongly recommended

Once students have learned some physics, they should also know the history behind it. This course surveys the history of physics from the Paleolithic to the 21st century and will add breadth to a student's understanding of physical thought.

3 credits

Prerequisite(s): PHYS 312 (formerly PHYS 222)

Pre- or corequisite(s): PHYS 382 or 383 (Advanced Electricity & Magnetism Group of experiments) strongly recommended

This course builds upon the concepts discussed in PHYS 112 and 312. Maxwell's equations are examined from several perspectives and their link with special relativity is explored. Also, the propagation, reflection, transmission, refraction, and polarization of electromagnetic waves is studied. The potential formulation of Maxwell’s equations is introduced and used to analyse several time-dependent charge and current distributions. An introduction to the classical theory of radiation is also presented.

3 credits

Prerequisite(s): PHYS 351

Three dimensional quantum mechanics and multi-particle states, addition of angular momentum, Clebsch-Gordan coefficients, identical particles, weak and strong Pauli exclusion principle, the periodic table, and spectroscopic notation; perturbation theory, variational principle, Fermi’s golden rule and time dependent potentials; quantum scattering, cross sections and computation of scattering amplitudes.

3 credits

Prerequisite(s): PHYS 352

Einstein’s theory of general relativity; a description of gravity as a consequence of the curvature of spacetime; introduction to differential geometry and geodesics; Schwarzschild metric, gravitational waves, and FLRW cosmology.

3 credits

Prerequisite(s): (PHYS 231) and (PHYS 351).

Pre- or corequisite(s): PHYS 311 recommended.

Binding of molecules and atoms, crystalline structures and Bravais lattices in 2 and 3 dimensions, symmetry operations, and the Miller indices; Bragg’s law and scattering off of crystals, x-ray diffraction, Brillouin zones, and form factors; lattice vibrations and phonons, dispersion relationships, thermal properties of crystals and heat capacities; Fermi levels and electrical properties, Bloch’s theorem and conduction bands.

3 credits

Prerequisite(s): PHYS 351

This course serves as an introduction to the standard model – an incredibly successful quantum field theory which describes to unprecedented accuracy electromagnetic, strong, and weak forces between particles. The course begins with a brief survey of the known classes of particles: quarks, leptons, vector mediators, mesons, and baryons. Additional topics covered include relativistic kinematics, conservation laws, symmetries, and the Dirac equation. Feynman diagrams are introduced and used to study particle reactions. In particular, decay rates and/or cross-sections are determined for a number of important processes such as electron-positron scattering and neutron decay.

3 credits

Prerequisite(s): PHYS 351

Nuclear sizes and range, the periodic table and isotopes; Rutherford scattering (classical and quantum), nuclear form factors, and charge distributions; liquid drop model, binding energy and the Semi Empirical Mass Formula, binding energy curve, nuclear drip lines; shell models and spin-orbit coupling, magic numbers, mirror nuclei, spin and parity states; radioactive decay, fission and fusion, half-life and nuclear stability.

3 credits

Prerequisite(s): PHYS 381

Working physicists analyze physical systems and model them mathematically. The equations that arise are often complicated, so specific mathematical techniques have been developed over the years to solve them. These solutions then predict the future behaviour of that physical system. This course includes: Bessel functions and associated Legendre polynomials and their applications in mechanics, electromagnetism, and the hydrogen atom; the calculus of variations, with applications in classical mechanics, optics, and classical field theory, (with attention to coupled systems); Green function techniques; and applications to strings, electromagnetism, and heat. Students will work many problems initially using pen and paper, and then with Maple and/or C or FORTRAN. Computers will be used to generate numerical and/or graphical solutions.

3 credits

Prerequisite(s): PHYS 221, PHYS 381

Pre- or corequisite(s): PHYS 485

This course is designed to introduce students to the exciting world of nonlinear physics. This is an important course because nonlinear and computational physics are modern topics that are at the cutting edge of research. The course introduces techniques that not only can be applied to physics, but to other disciplines; disciplines as diverse as economics and medicine. Computer algebra is introduced and used extensively to perform the symbolic computations, equation manipulations, simulations, animations, and model testing required by this course. Some mathematical methods include: the solving of nonlinear differential and difference equations, topological analysis, limit cycles, partial differential equations, and a variety of numerical techniques.

3 credits

Prerequisite(s): PHYS 221, PHYS 381

Pre- or corequisite(s): PHYS 484

This is a laboratory course in nonlinear physics. It is designed to provide "hands-on" experience with nonlinear topics covered in PHYS 484.

3 credits

Pre- or corequisite(s): PHYS 393 and PHYS 381

This course extends and augments the problem-solving skills of physics students taught in PHYS 393. Problems amenable to solving with computer algebra systems will be emphasized. The problem-solving emphasis will be on an understanding of the physics and on checking whether the solution correctly predicts the actual physical behaviour.

Last extracted: May 09, 2017 02:04:21 PM